精英家教網 > 高中數學 > 題目詳情
函數f(x)=ax-1+logax(a>0且a≠1),在[1,2]上的最大值與最小值之和是a,則a的值是( 。
A.
1
2
B.
1
4
C.2D.4
因為函數f(x)=ax-1+logax(a>0且a≠1),
所以函數f(x)在a>1時遞增,最大值為f(2)=a2-1+loga2;最小值為f(1)=a1-1+loga1,
函數f(x)在0<a<1時遞減,最大值為f(1)=a1-1+loga1,最小值為f(2)=a2-1+loga2
故最大值和最小值的和為:f(1)+f(2)=a+loga2+1+loga1=a.
∴l(xiāng)oga2=-1?a=
1
2

故選A.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax+
bx
+c(a>0)的圖象在點(1,f(1))處的切線方程為y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數a≠0,函數f(x)=ax(x-2)2(x∈R)
(Ⅰ)若函數f(x)有極大值32,求實數a的值;
(Ⅱ)若對于x∈[-2,1],不等式f(x)<
329
恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=ax(a>0且a≠1)在[-1,1]上的最大值與最小值之和為
10
3
,則a的值為
3或
1
3
3或
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+b,其中f(0)=-2,f(2)=0,則f(3)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•惠州模擬)(注:本題第(2)(3)兩問只需要解答一問,兩問都答只計第(2)問得分)
已知函數f(x)=ax+xln|x+b|是奇函數,且圖象在點(e,f(e))處的切線斜率為3(e為自然對數的底數).
(1)求實數a、b的值;
(2)若k∈Z,且k<
f(x)x-1
對任意x>1恒成立,求k的最大值;
(3)當m>n>1(m,n∈Z)時,證明:(nmmn>(mnnm

查看答案和解析>>

同步練習冊答案