【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值,并說明理由.

【答案】
(1)

解:∵0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1,

∴a=0.3


(2)

解:由圖可得月均用水量不低于3噸的頻率為:0.5×(0.12+0.08+0.04)=0.12,

由30×0.12=3.6得:全市居民中月均用水量不低于3噸的人數(shù)約為3.6萬


(3)

解:由圖可得月均用水量低于2.5噸的頻率為:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%;

月均用水量低于3噸的頻率為:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%;

則x=2.5+0.5× =2.9噸


【解析】(1)根據(jù)各組的累積頻率為1,構(gòu)造方程,可得a值;
(2)由圖可得月均用水量不低于3噸的頻率,進而可估算出月均用水量不低于3噸的人數(shù);
(3)由圖可得月均用水量低于2.5噸的頻率及月均用水量低于3噸的頻率,進而可得x值.
本題考查的知識點是頻率分布直方圖,用樣本估計總體,難度不大,屬于基礎(chǔ)題.
【考點精析】本題主要考查了頻率分布直方圖和用樣本的數(shù)字特征估計總體的數(shù)字特征的相關(guān)知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差.在隨機抽樣中,這種偏差是不可避免的才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為定義在 上的奇函數(shù),當時,函數(shù)解析式為.

)求的值,并求出上的解析式;

)求上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知AEDAEDDE旋轉(zhuǎn)過程中的一個圖形,給出以下四個命題:①AC平面ADF;②平面AGF平面BCED;③動點A′在平面ABC上的射影在線段AF上;④異面直線AEBD不可能垂直.其中正確命題的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(2)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi),定點A,B,C,D滿足 = = , = = =﹣2,動點P,M滿足 =1, = ,則| |2的最大值是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρcos2θ-4sin θ=0.

(1)寫出直線l的普通方程和曲線C的直角坐標方程;

(2)已知點P(1,0).若點M的極坐標為,直線l經(jīng)過點M且與曲線C相交于A,B兩點,設(shè)線段AB的中點為Q,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設(shè)甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)

1)求的值;

2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=fx)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)fx)是區(qū)間D上的“H函數(shù)”.對于命題:

①函數(shù)fx)=-x+是區(qū)間(0,1)上的“H函數(shù)”;

②函數(shù)gx)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( 。

A. 均為真命題 B. 為真命題,為假命題

C. 為假命題,為真命題 D. 均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)若f(x)在[1,e]上的最小值為 ,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案