在長(zhǎng)方體中,,,中點(diǎn).(Ⅰ)證明:;(Ⅱ)求與平面所成角的正弦值;(Ⅲ)在棱上是否存在一點(diǎn),使得∥平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅰ)先證平面(Ⅱ)(Ⅲ)的長(zhǎng).

試題分析:(Ⅰ)證明:連接是長(zhǎng)方體,∴平面,又平面 ∴    
在長(zhǎng)方形中, ∴     
平面,    
平面      
(Ⅱ)如圖建立空間直角坐標(biāo)系,則

,  
設(shè)平面的法向量為,則    令,則  ,
       
所以 與平面所成角的正弦值為                
(Ⅲ)假設(shè)在棱上存在一點(diǎn),使得∥平面.
設(shè)的坐標(biāo)為,則 因?yàn)?nbsp;∥平面
所以 ,即, ,解得,        
所以 在棱上存在一點(diǎn),使得∥平面,此時(shí)的長(zhǎng)
點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、直線與平面所成的角、三角函數(shù)等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分別為線段PDBC的中點(diǎn).

(Ⅰ) 求證:CE∥平面PAF
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,二面角的棱上有C、D兩點(diǎn),線段AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于CD,已知AC=2,BD=3, AB=6,CD=,則這個(gè)二面角的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.

(1)求證:NC∥平面MFD;
(2)若EC=3,求證:ND⊥FC;
(3)求四面體NFEC體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在Rt中, ,D、E分別是上的點(diǎn),且.將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面
(Ⅱ)若,求與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且.證明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知集合={直線},={平面},.若,給出下列四個(gè)命題:
  ② ③ ④ 其中所有正確命題的序號(hào)是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是三個(gè)不重合的平面,a,b是兩條不重合的直線,有下列三個(gè)條件:①如果命題且_______,則為真命題,則可以在橫線處填入的條件是(  )
A.①或②B.②或③C.①或③ D.只有②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。

(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問(wèn):在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案