精英家教網 > 高中數學 > 題目詳情
若(a2-a)+(3a-1)i=2+5i,其中i是虛數單位,則實數a的值為   
【答案】分析:先化簡已知的等式,再利用兩個復數相等的條件,解方程求出實數a的值.
解答:解:∵(a2-a)+(3a-1)i=2+5i,
∴a2-a=2,且3a-1=5,
∴a=2,
故答案為 2.
點評:本題考查兩個復數的乘法法則的應用,以及兩個復數相等的條件.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若△ABC的三邊長a、b、c滿足a2-a-2b-2c=0且a+2b-2c+3=0,則它的最大內角的度數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•薊縣二模)已知函數f(x)=-
1
3
x3+
1
2
(2a+1)x2
-2ax+1,其中a為實數.
(Ⅰ)當a≠
1
2
時,求函數f(x)的極大值點和極小值點;
(Ⅱ) 若對任意a∈(2,3)及x∈[1,3]時,恒有ta2-f(x)>
3
2
成立,求實數t的取值范圍.
(Ⅲ)已知g(x)=a2x2+ax+1,m(x)=
4
3
x3-(a2+
3
2
)x2
+(2a+5)x-3,h(x)=f(x)+m(x),設函數q(x)=
g(x),x≥0
h(x),x<0.
是否存在a,對任意給定的非零實數x1,存在惟一的非零實數x2(x2≠x1),使得q′(x2)=q′(x1)成立?若存在,求a的值;若不存,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=(a2+4a-5)x2-4(a-1)x+3的圖象恒在x軸上方,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河南省原名校高三下學期第二次聯考文科數學試卷(解析版) 題型:解答題

設函數。

(1)當a=l時,求函數的極值;

(2)當a2時,討論函數的單調性;

(3)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

實數m的取值范圍。

 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2x的反函數為y=f--1(x),若f--1(a)+f--1(b)=3,則a2+b2的最小值為

A.12             B.18             C.16          D.

查看答案和解析>>

同步練習冊答案