19.已知b-2n3m(b>0,m,n∈N+),則b=( 。
A.π${\;}^{\frac{3m}{2n}}$(m,n∈N+B.π${\;}^{-\frac{3m}{2n}}$(m,n∈N+C.π${\;}^{\frac{2n}{3m}}$(m,n∈N+D.π${\;}^{-\frac{2n}{3m}}$(m,n∈N+

分析 利用指數(shù)冪的運(yùn)算性質(zhì)即可得出.

解答 解:∵b-2n3m(b>0,m,n∈N+),
則b=${π}^{-\frac{3m}{2n}}$.
故選:B.

點(diǎn)評(píng) 本題考查了指數(shù)冪的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若關(guān)于x的不等式$\frac{a(x-2)}{x+3}$<2的解集是(-∞,-3)∪(-2,+∞),則實(shí)數(shù)a的值是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在區(qū)間[0,1]上隨機(jī)取一個(gè)數(shù)x,則滿足不等式“3x-1>0”的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左,右焦點(diǎn)分別是F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上一動(dòng)點(diǎn),△F1PF2內(nèi)切圓面積的最大值是$\frac{π}{3}$.
(1)求橢圓C的方程;
(2)A是橢圓C的左頂點(diǎn),斜率為k(k>0)的直線交C于A.M兩點(diǎn),點(diǎn)N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論中,表述正確的是( 。
A.∅∈NB.{2}∈NC.$\sqrt{2}$∈ND.{$\sqrt{2}$}⊆N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=f(x)在定義域R上是增函數(shù),且f(a+1)<f(2a),則a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{m}$,$\overrightarrow{n}$為單位向量,其夾角為60°,則($\overrightarrow{m}$+$\overrightarrow{n}$)2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1>0,a2+a9>0,a5a6<0,則滿足Sn>0的最大自然數(shù)n的值為(  )
A.5B.6C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m,n是兩條不同直線,α,β是兩個(gè)不同平面,則下列命題錯(cuò)誤的是( 。
A.若α,β垂直于同一平面,則α與β可能相交
B.若m,n平行于同一平面,則m與n可能異面
C.若m,n不平行,則m與n不可能垂直于同一平面
D.若α,β不平行,則在α內(nèi)不存在與β平行的直線

查看答案和解析>>

同步練習(xí)冊答案