函數(shù)y=2sin(-2x+ )的單調(diào)減區(qū)間為(  )

A.                B.

C.           D.

 

【答案】

B

【解析】

試題分析:根據(jù)題意,由于函數(shù)數(shù)y=2sin(-2x+),內(nèi)層是減函數(shù),則求解復(fù)合函數(shù)單調(diào)減區(qū)間,就是求解外層的增區(qū)間,整體代入?yún)^(qū)間中,故解得x的范圍是,故選B.

考點(diǎn):正弦函數(shù)的單調(diào)性

點(diǎn)評(píng):本題主要考查了正弦函數(shù)的單調(diào)性.考查了學(xué)生對(duì)正弦函數(shù)基本性質(zhì)的理解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)P是函數(shù)y=2sin(ωx+φ)(x∈R,ω>0)圖象的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),若
PM
PN
=0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(2x-
π
6
)
的圖象( 。
A、關(guān)于原點(diǎn)成中心對(duì)稱
B、關(guān)于y軸成軸對(duì)稱
C、關(guān)于(
π
12
,0)
成中心對(duì)稱
D、關(guān)于直線x=
π
12
成軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-2sin(2x+
π3
)
取得最大值時(shí)所對(duì)應(yīng)x的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對(duì)稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個(gè)命題中正確的有
 
(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=2sin3x的圖象向右平移
π
6
個(gè)單位后得到函數(shù)y=2sin(x-
π
6
)
的圖象;q:函數(shù)y=sin2x+2sinx-1的最大值為1.則下列命題中真命題為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案