設(shè)數(shù)列{xn}滿足lnxn+1=1+lnxn,且x1+x2+x3+…+x10=10.則x21+x22+x23+…+x30的值為(  )
A.11•e20B.11•e21C.10•e21D.10•e20
∵lnxn+1=1+lnxn,
∴l(xiāng)nxn+1-lnxn=1
xn+1
xn
=e

∵x1+x2+x3+…+x10=10
∴x21+x22+x23+…+x30=e20•(x1+x2+x3+…+x10)=10e20
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+1)n(n∈N*),l是f(x)在點(1,f(1))處的切線,l與x軸的交點坐標為(xn,0),
(1)若數(shù)列{an}滿足an=(1-xn)(1-xn+1),求數(shù)列{an}的前n項和Sn;
(2)設(shè)bk表示(x+1)n的二項展開式的第k+1項的二項式系數(shù),求和
nk=1
kbk

查看答案和解析>>

同步練習(xí)冊答案