如圖,將一塊直角三角形板ABO放置于平面直角坐標(biāo)系中,已知AB=BO=2,AB⊥OB.點(diǎn)P(1,)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中陰影部分(即△POB)受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)P的任一直線MN將三角板鋸成△AMN,設(shè)直線MN的斜率k.
(Ⅰ)試用k表示△AMN的面積S,并指出k的取值范圍;
(Ⅱ)試求S的最大值.
【答案】分析:(Ⅰ)根據(jù)題意,先求直線MN,OA的方程,可解得 .且 ,
從而可求 .進(jìn)而可求△AMN的面積S.
(Ⅱ)求導(dǎo)函數(shù),可知S=f(k)在上是減函數(shù),從而可求S取得最大值.
解答:解:(Ⅰ)根據(jù)題意可得,MN:,OA:y=x,
解得 .且 ,
于是 ,
所以 
,
(Ⅱ),
因?yàn)楫?dāng)時(shí),S'≤0,
故S=f(k)在上是減函數(shù).
所以當(dāng)時(shí),S取得最大值
點(diǎn)評(píng):本題考查的重點(diǎn)是函數(shù)模型的構(gòu)建,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,解題的關(guān)鍵是利用三角形的面積公式,構(gòu)建函數(shù)關(guān)系式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,將一塊直角三角形板ABO置于平面直角坐標(biāo)系中,已知AB=OB=1,AB⊥OB,點(diǎn)P(
1
2
,
1
4
)
是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)P的任一直線MN將三角板鋸成△AMN.問(wèn):
(1)求直線MN的方程
(2)求點(diǎn)M,N的坐標(biāo)
(3)應(yīng)如何確定直線MN的斜率,可使鋸成的△AMN的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一塊直角三角形板ABO放置于平面直角坐標(biāo)系中,已知AB=BO=2,AB⊥OB.點(diǎn)P(1,
12
)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中陰影部分(即△POB)受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)P的任一直線MN將三角板鋸成△AMN,設(shè)直線MN的斜率k.
(Ⅰ)試用k表示△AMN的面積S,并指出k的取值范圍;
(Ⅱ)試求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,將一塊直角三角形板ABO放置于平面直角坐標(biāo)系中,已知AB=BO=2,AB⊥OB.點(diǎn)P(1,數(shù)學(xué)公式)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中陰影部分(即△POB)受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)P的任一直線MN將三角板鋸成△AMN,設(shè)直線MN的斜率k.
(Ⅰ)試用k表示△AMN的面積S,并指出k的取值范圍;
(Ⅱ)試求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將一塊直角三角形板ABO放置于平面直角坐標(biāo)系中,已知AB=BO=2,AB⊥OB.點(diǎn)P(1,
1
2
)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中陰影部分(即△POB)受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)P的任一直線MN將三角板鋸成△AMN,設(shè)直線MN的斜率k.
(Ⅰ)試用k表示△AMN的面積S,并指出k的取值范圍;
(Ⅱ)試求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案