【題目】已知g(x)=sin2x,將g(x)的圖象向左平移 個單位長度,再將圖象上各點的橫坐標(biāo)縮短到原來的 ,得到函數(shù)f(x)的圖象,則( )
A.
B. ??
C.
D.
【答案】B
【解析】解:將g(x)=sin2x的圖象向左平移 個單位長度,可得y=sin2(x+ )=sin(2x+ )的圖象; 再將圖象上各點的橫坐標(biāo)縮短到原來的 ,得到函數(shù)f(x)=sin(8x+ )的圖象,
故選:B.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列兩個變量之間的關(guān)系哪個不是函數(shù)關(guān)系( )
A.角度和它的正切值
B.人的右手一柞長和身高
C.正方體的棱長和表面積
D.真空中自由落體運(yùn)動物體的下落距離和下落時間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+ax2﹣4在x=2處取得極值,若m,n∈[0,1],則f'(n)+f(m)的最大值是( )
A.﹣9
B.﹣1
C.1
D.﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某品牌手機(jī)公司生產(chǎn)某款手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬部并全部銷售完,每萬部的銷售收入為R(x)萬美元,且R(x)= .
(1)寫出年利潤f(x)(萬美元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍;
(Ⅱ)函數(shù),若使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知四棱柱的底面是邊長為的菱形,且, 平面, ,設(shè)為的中點。
(Ⅰ)求證: 平面
(Ⅱ)點在線段上,且平面,
求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一曲線C是與兩個定點O(0,0),A(3,0)的距離比為 的點的軌跡.
(1)求曲線C的方程,并指出曲線類型;
(2)過(﹣2,2)的直線l與曲線C相交于M,N,且|MN|=2 ,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com