在一次抗洪搶險中,準備用射擊的方法引爆從橋上游漂流而下的一巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功,兩次命中不一定連續(xù),每次射擊命中率都是
23
.,每次命中與否互相獨立.
(Ⅰ)求油罐被引爆的概率.
(Ⅱ)若油罐引爆或子彈射完則停止射擊,求射擊4次引爆成功的概率.
分析:(1)設(shè)“油罐被引爆”的事件為事件A,其對立事件為
.
A
,則P(
.
A
)=
C
1
5
2
3
(
1
3
)
4
+(
1
3
)
5
,用1減去此概率,即得所求.
(2)射擊4次引爆成功,說明前3次射擊只擊中1次,第四次擊中汽油罐,再根據(jù)n次獨立重復(fù)試驗中恰好發(fā)生k次的概率公式求得射擊4次引爆成功的概率.
解答:解:(1)設(shè)“油罐被引爆”的事件為事件A,其對立事件為
.
A
,則P(
.
A
)=
C
1
5
2
3
(
1
3
)
4
+(
1
3
)
5
,
∴P(A)=1-[
C
1
5
•(
2
3
)(
1
3
)
4
+(
1
3
)
5
]=
232
243

(2)射擊4次引爆成功,說明前3次射擊只擊中1次,第四次擊中汽油罐,
故射擊4次引爆成功的概率為P=
C
1
3
2
3
(
1
3
)
2
2
3
=
4
27
點評:本題考查相互獨立事件的概率乘法公式及n次獨立重復(fù)試驗中恰好發(fā)生k次的概率公式,事件和它的對立事件概率之間的關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一次抗洪搶險中,準備用射擊的方法引爆從河上游漂流而下的一只巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射擊命中的概率都是
23
,每次命中與否互相獨立.
(Ⅰ)求恰好射擊5次引爆油罐的概率;
(Ⅱ)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ,求ξ的分布列及ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次抗洪搶險中,準備用射擊的方法引爆從河上游漂流而下的一只巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射擊命中的概率都是
23
,每次命中與否互相獨立.
(Ⅰ)求恰用3發(fā)子彈就將油罐引爆的概率;
(Ⅱ)求油罐被引爆的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次抗洪搶險中準備用射擊的方法引爆從上游漂流而下的一個巨大汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是
23

(1)求油罐被引爆的概率;
(2)如果引爆或子彈打光停止射擊,請通過計算證明:停止射擊的概率必然為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)二模文)(13分)

在一次抗洪搶險中,準備用射擊的方法引爆從河上游漂流而下的一只巨大汽油罐.已知只有5發(fā)子彈備用,且首次命中只能使汽油流出,再次命中才能引爆成功.每次射擊命中的概率都是,每次命中與否互相獨立.

(Ⅰ)求恰用3發(fā)子彈就將油罐引爆的概率;     

(Ⅱ)求油罐被引爆的概率.

查看答案和解析>>

同步練習(xí)冊答案