過(guò)拋物線y2=2px焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則
OA
OB
的值是( 。
分析:分情況討論:當(dāng)直線l垂直于x軸時(shí),
OA
OB
的值;當(dāng)直線l不垂直于x軸時(shí),再設(shè)出直線方程,把直線與拋物線方程聯(lián)立,得到A,B兩點(diǎn)的坐標(biāo)和斜率之間的關(guān)系,再代入
OA
OB
計(jì)算即可得到結(jié)論.
解答:解:若直線l垂直于x軸,則 A(
p
2
,p)
,B(
p
2
,-p)
.
OA
OB
=(
p
2
)2-p2=-
3
4
p2
.…(2分)
若直線l不垂直于軸,設(shè)其方程為 y=k(x-
p
2
)
,A(x1,y1)B(x2,y2).
y=k(x-
p
2
)
y2=2px
k2x2-p(2+k2)x+
p2
4
k2=0

x1+x2=
(2+k2)
k2
p,x1x2=
p2
4
.…(4分)
OA
OB
=x1x2+y1y2=x1x2+k2(x1-
p
2
)(x2-
p
2
)
=(1+k2)x1x2-
p
2
k2(x1+x2)+
p2k2
4
=(1+k2)
p2
4
-
p
2
k2
(2+k2)p
k2
+
p2k2
4
=-
3
4
p2

綜上,
OA
OB
=-
3
4
p2
為定值.…(6分)
故選B.
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,一元二次方程根與系數(shù)的關(guān)系,兩個(gè)向量的數(shù)量積公式的應(yīng)用,求出x1•x2 和y1•y2的值,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l與拋物線在第一象限的交點(diǎn)為A,與拋物線的準(zhǔn)線的交點(diǎn)為B,點(diǎn)A在拋物線準(zhǔn)線上的射影為C,若
AF
=
FB
,
BA
BC
=48
,則拋物線的方程為( 。
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)上一定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),若PA與PB的斜率存在且傾斜角互補(bǔ),則
y1+y2y0
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),O為拋物線的頂點(diǎn).則△ABO是一個(gè)( 。
A、等邊三角形B、直角三角形C、不等邊銳角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線AB交拋物線于A,B兩點(diǎn),弦AB的中點(diǎn)為M,過(guò)M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB
;
(2)過(guò)A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武漢模擬)已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線l:x=-
p
2
相交于P、Q兩點(diǎn),則∠PFQ=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案