如圖,已知橢圓內(nèi)有一點M,過M作兩條動直線AC、BD分別交橢圓于A、C和B、D兩點,若

(1)證明:AC⊥BD;
(2)若M點恰好為橢圓中心O
(i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請說明理由.
(ii)求弦AB長的最小值.
【答案】分析:(1)設(shè)出點的坐標,利用,即可證得,從而AC⊥BD;
(2)(i)根據(jù)AC⊥BD,由橢圓對稱性知AC與BD互相平分,所以四邊形ABCD是菱形,它存在內(nèi)切圓,設(shè)直線AB方程為:y=kx+m,利用圓心到直線的距離,可得;聯(lián)立 ,利用OA⊥OB,可得,從而可求內(nèi)切圓的方程;
(ii)求出弦AB的長=,令3m2-1=t,則,所以根據(jù),即可求得弦AB長的最小值.
解答:(1)證明:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4

展開整理得:x1x2+y1y2+x3x4+y3y4=x2x3+y2y3+x1x4+y1y4
即x1(x2-x4)+x3(x4-x2)+y1(y2-y4)+y3(y4-y2)=0
∴(x1-x3)(x2-x4)+(y1-y3)(y2-y4)=0
,
∴AC⊥BD….(4分)
(2)解:(i)∵AC⊥BD,由橢圓對稱性知AC與BD互相平分,
∴四邊形ABCD是菱形,它存在內(nèi)切圓,圓心為O,設(shè)半徑為r,直線AB方程為:y=kx+m
,即
聯(lián)立 得(1+2k2)x2+4kmx+2m2-2=0

由(1)知OA⊥OB,
∴x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0


∴2m2-2+2m2k2-2k2-4k2m2+m2+2m2k2=0

②代入①有:
∴存在內(nèi)切圓,其方程為:….(9分)
容易驗證,當k不存在時,上述結(jié)論仍成立.
(ii)

=
令3m2-1=t,則

,∴,故t≥1,∴
時,,此時
容易驗證,當k不存在時,….(13分)
點評:本題以橢圓方程為載體,考查向量知識的運用,考查橢圓與圓的綜合,考查圓中的弦長的求解,挖掘隱含,熟練計算是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知AB=2c(常數(shù)c>0),以AB為直徑的圓有一內(nèi)接梯形ABCD,且AB∥CD,若橢圓以A,B為焦點,且過C,D兩點,則當梯形ABCD的周長最大時,橢圓的離心率為
3
-1
3
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

已知雙曲線C1和橢圓C2有相同的焦點F1(c,0)F2(c,0)(c>0),兩曲線在第一象限內(nèi)的交點為P,橢圓C2y軸負方向交點為B,且PF2、B三點共線,F2的比為12,又直線PB與雙曲線C1的另一交點為Q(如圖),若|F2Q|=,求雙曲線C1,橢圓C2的方程。

 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

已知雙曲線C1和橢圓C2有相同的焦點F1(c,0)F2(c,0)(c>0),兩曲線在第一象限內(nèi)的交點為P,橢圓C2y軸負方向交點為B,且P、F2B三點共線,F2的比為12,又直線PB與雙曲線C1的另一交點為Q(如圖),若|F2Q|=,求雙曲線C1,橢圓C2的方程。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省徐州市高二(上)期末數(shù)學試卷(理科)(解析版) 題型:填空題

如圖,已知AB=2c(常數(shù)c>0),以AB為直徑的圓有一內(nèi)接梯形ABCD,且AB∥CD,若橢圓以A,B為焦點,且過C,D兩點,則當梯形ABCD的周長最大時,橢圓的離心率為   

查看答案和解析>>

同步練習冊答案