已知雙曲線,以右頂點(diǎn)為圓心,實(shí)半軸長為半徑的圓被雙曲線的一條漸近線分為弧長為1:2的兩部分,則雙曲線的離心率為( )
A.![]() | B.![]() | C.![]() | D.![]() |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分) 已知圓方程為:
.
(1)直線過點(diǎn)
,且與圓
交于
、
兩點(diǎn),若
,求直線
的方程;
(2)過圓上一動(dòng)點(diǎn)
作平行于
軸的直線
,設(shè)
與
軸的交點(diǎn)為
,若向量
(
為原點(diǎn)),求動(dòng)點(diǎn)
的軌跡方程,并說明此軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角三角形的頂點(diǎn)坐標(biāo)
,直角頂點(diǎn)
,頂點(diǎn)
在
軸上,點(diǎn)
為線段
的中點(diǎn)
(1)求邊所在直線方程;(2)圓
是△ABC的外接圓,求圓
的方程;
(3)若DE是圓的任一條直徑,試探究
是否是定值?
若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,且雙曲線的離心率等于
,則該雙曲線的方程為( )
A.![]() | B.![]() |
C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知?jiǎng)狱c(diǎn)在橢圓
上,若
點(diǎn)坐標(biāo)為
,
,且
,則
的最小值是( )
A.![]() | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
拋物線:
的焦點(diǎn)與雙曲線
:
的右焦點(diǎn)的連線交
于第一象限的點(diǎn)
,若
在點(diǎn)
處的切線平行于
的一條漸近線,則
( )
A.![]() | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若橢圓+
=1與雙曲線
-
=1(m,n,p,q均為正數(shù))有共同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共點(diǎn),則
·
=( )
A.p2-m2 | B.p-m | C.m-p | D.m2-p2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com