條件甲:是條件乙:x·y=0的

[  ]

A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•成都模擬)已知條件甲:函數(shù)f(x)=ax(a>0,a≠1)在其定義域內是減函數(shù),條件乙:loga
1
2
>0
,則條件甲是條件乙的(  )

查看答案和解析>>

科目:高中數(shù)學 來源:成都模擬 題型:單選題

已知條件甲:函數(shù)f(x)=ax(a>0,a≠1)在其定義域內是減函數(shù),條件乙:loga
1
2
>0
,則條件甲是條件乙的( 。
A.充分而不必要的條件
B.必要而不充分的條件
C.充要條件
D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽一中高二(下)第二次段考數(shù)學試卷(理科)(解析版) 題型:解答題

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結果相互獨立,每道工序的加工結果均有A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結果都為A級時,產(chǎn)品為一等品,其余均為二等品.
(Ⅰ)已知甲、乙兩種產(chǎn)品每一道工序的加工結果為A級的概率如表一所示,分別求生產(chǎn)出的甲、乙產(chǎn)品為一等品的概率P、P;
產(chǎn)品\概率\工序第一工序第二工序
0.80.85
0.750.8
(Ⅱ)已知一件產(chǎn)品的利潤如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(I)的條件下,求ξ、η的分布列及Eξ、Eη;
產(chǎn)品\利潤\等級一等二等
5(萬元)2.5(萬元)
2.5(萬元)1.5(萬元)
(Ⅲ)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額如表三所示.該工廠有工人40名,可用資金60萬元.設x、y分別表示生產(chǎn)甲、乙產(chǎn)品的數(shù)量,在(II)的條件下,x、y為何值時,z=xEξ+yEη最大?最大值是多少?(解答時須給出圖示)
產(chǎn)品\用量\項目工人(名)資金(萬元)
85
210

查看答案和解析>>

科目:高中數(shù)學 來源:2011年河南省三門峽市盧氏一中高考考前熱身訓練數(shù)學試卷(理科)(解析版) 題型:解答題

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結果相互獨立,每道工序的加工結果均有A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結果都為A級時,產(chǎn)品為一等品,其余均為二等品.
(Ⅰ)已知甲、乙兩種產(chǎn)品每一道工序的加工結果為A級的概率如表一所示,分別求生產(chǎn)出的甲、乙產(chǎn)品為一等品的概率P、P;
產(chǎn)品\概率\工序第一工序第二工序
0.80.85
0.750.8
(Ⅱ)已知一件產(chǎn)品的利潤如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(I)的條件下,求ξ、η的分布列及Eξ、Eη;
產(chǎn)品\利潤\等級一等二等
5(萬元)2.5(萬元)
2.5(萬元)1.5(萬元)
(Ⅲ)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額如表三所示.該工廠有工人40名,可用資金60萬元.設x、y分別表示生產(chǎn)甲、乙產(chǎn)品的數(shù)量,在(II)的條件下,x、y為何值時,z=xEξ+yEη最大?最大值是多少?(解答時須給出圖示)
產(chǎn)品\用量\項目工人(名)資金(萬元)
85
210

查看答案和解析>>

同步練習冊答案