若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-2)2y2=1上,點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值是       

試題分析:設(shè)點(diǎn),拋物線焦點(diǎn)為,所以由于拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以,
所以,設(shè)所以,所以原式的最大值為.
點(diǎn)評(píng):本題考查圓與圓錐曲線的綜合運(yùn)用,具體涉及到圓的簡單性質(zhì)、拋物線的簡單性質(zhì)、配方法等基本知識(shí)點(diǎn),解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),又有點(diǎn)A(3,2).
則|PA|+|PF|的最小值是       ,取最小值時(shí)P點(diǎn)的坐標(biāo)           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線交于A,B兩點(diǎn),且(其中O為坐標(biāo)原點(diǎn)),若OMABM,則點(diǎn)M的軌跡方程為 (   )
A.2  B. 
C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中真命題的是(  )
A.在同一平面內(nèi),動(dòng)點(diǎn)到兩定點(diǎn)的距離之差(大于兩定點(diǎn)間的距離)為常數(shù)的點(diǎn)的軌跡是雙曲線
B.在平面內(nèi),F(xiàn)1,F(xiàn)2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則點(diǎn)M的軌跡是橢圓
C.“若-3<m<5則方程是橢圓”
D.在直角坐標(biāo)平面內(nèi),到點(diǎn)和直線距離相等的點(diǎn)的軌跡是直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù))。
求極點(diǎn)在直線上的射影點(diǎn)的極坐標(biāo);
、分別為曲線、直線上的動(dòng)點(diǎn),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的焦點(diǎn)為F,過拋物線在第一象限部分上一點(diǎn)P的切線為,過P點(diǎn)作平行于軸的直線,過焦點(diǎn)F作平行于的直線交于M,若,則點(diǎn)P的坐標(biāo)為         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知點(diǎn),參數(shù),點(diǎn)Q在曲線C:上.
(1)求在直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線C的方程;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)為拋物線的焦點(diǎn),為拋物線上任意一點(diǎn),已為圓心,為半徑畫圓,與軸負(fù)半軸交于點(diǎn),試判斷過的直線與拋物線的位置關(guān)系,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過作與軸垂直的直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),且。
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足
為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案