【題目】如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1 , 焦點為F2;以F1 , F2為焦點,離心率e=的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動.
當m=1時,求橢圓C2的方程;

【答案】解:當m=1時,y2=4x,則F1(﹣1,0),F(xiàn)2(1,0)
設橢圓方程為=1(a>b>0),則c=1,又e==,所以a=2,b2=3
所以橢圓C2方程為=1
【解析】當m=1時,y2=4x,則F1(﹣1,0),F(xiàn)2(1,0).設橢圓方程為(a>b>0),由題設條件知c=1,a=2,b2=3,由此可知橢圓C2方程為
【考點精析】掌握橢圓的標準方程是解答本題的根本,需要知道橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 的方程為,點的坐標為.

(1)求過點且與直線平行的直線方程;

(2)求過點且與直線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對任意,都有.

(1)若函數(shù)的頂點坐標為,求的解析式;

(2)函數(shù)的最小值記為,求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}(n=1,2,3,4,5)滿足a1=a5=0,且當2≤k≤5時,(ak﹣ak﹣12=1,令S= , 則S不可能的值是( 。
A.4
B.0
C.1
D.-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(Ⅰ)求證數(shù)列{an}是首項為1的等比數(shù)列;
(Ⅱ)當a2=2時,是否存在等差數(shù)列{bn},使得a1bn+a2bn﹣1+a3bn﹣2+…+anb1=2n+1﹣n﹣2對一切n∈N*都成立?若存在,求出bn;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道(是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口的中點,分別落在線段上.已知米,米,記

(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

(2)若,求此時管道的長度;

(3)當取何值時,污水凈化效果最好?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三內角分別為,向量, ,記函數(shù),

(1)若,求的面積;

(2)若關于的方程有兩個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的中值點,下列函數(shù):

; ②; ③; ④中,在區(qū)間[O,1]中值點多于一個的函數(shù)序號為( )

A. ①② B. ①③ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為調查高三年學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.

(Ⅰ)試問在抽取的學生中,男、女生各有多少人?
(Ⅱ)根據頻率分布直方圖,完成下列的2×2列聯(lián)表,并判斷能有多大(百分幾)的把握認為“身高與性別有關”?

≥170cm

<170cm

總計

男生身高

女生身高

總計

(Ⅲ)在上述80名學生中,從身高在170~175cm之間的學生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當旗手,求3人中恰好有一名女生的概率.
參考公式:K2=
參考數(shù)據:

P(K2≥k0

0.025

0.010

0.005

0.001

k0

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案