分析:(1)利用等比數(shù)列的定義找尋數(shù)列中相鄰項(xiàng)之間的關(guān)系,從而確定出數(shù)列的等比性是解決本題的關(guān)鍵,要用好數(shù)列相鄰項(xiàng)之間的關(guān)系.
(2)利用數(shù)列{bn}是等比數(shù)列,先寫出數(shù)列{bn}的通項(xiàng)公式,進(jìn)而得出數(shù)列{an}與{bn}的關(guān)系,進(jìn)而寫出數(shù)列{an}的通項(xiàng)公式.
解答:解:(1)證明:b
n=a
n+1-
a
n=[
a
n+(
)
n+1]-
a
n=(
)
n+1-
a
n,b
n+1=(
)
n+2-
a
n+1=(
)
n+2-
[
a
n+(
)
n+1]=
•(
)
n+1-
a
n-
•(
)
n+1=
•(
)
n+1-
a
n=
•[(
)
n+1-
a
n],
∴
=
(n=1,2,3,…).
∴{b
n}是公比為
的等比數(shù)列.
(2)解:∵b
1=(
)
2-
a
1=
-
•
=
,
∴b
n=
•(
)
n-1=(
)
n+1.
由b
n=(
)
n+1-
a
n,得(
)
n+1=(
)
n+1-
a
n,解得a
n=6[(
)
n+1-(
)
n+1].
點(diǎn)評(píng):本題考查等比數(shù)列的判定,利用相鄰項(xiàng)之間的關(guān)系確定出后一項(xiàng)與這一項(xiàng)的商為常數(shù),考查等比數(shù)列通項(xiàng)公式的應(yīng)用,考查學(xué)生的運(yùn)算化簡(jiǎn)能力.