精英家教網(wǎng)如圖,已知雙曲線x2-
y2
3
=1
,A,C分別是虛軸的上、下頂點,B是左頂點,F(xiàn)為左焦點,直線AB與FC相交于點D,則∠BDF的余弦值是( 。
A、
7
7
B、
5
7
7
C、
7
14
D、
5
7
14
分析:利用雙曲線的簡單性質(zhì)求出直線方程,求出三角形三個頂點的坐標(biāo),利用余弦定理求得cos∠BDF 的值.
解答:解:由題意得A(0,b),C(0,-b),B(-a,0),F(xiàn)(-c,0),
c
a
=2.
∴BF=c-a=a,BD 的方程為
x
-a
+
y
b
=1
,即  bx-ay+ab=0,
DC的方程為 
x
-c
y
-b
=1
,即 bx+cy+bc=0,即 bx+2ay+2ab=0,
bx - ay +ab = 0
bx +2ay + 2ab = 0 
得 D (-
4a
3
,-
b
3
),又 b=
c2a2
=
3
 a,
∴FD=
(-c+
4
3
a)
2
+
b2
9
=
7a2
9
,BD=
(-a+
4
3
a)
2
+
b2
9
=
4
9
a2

三角形BDF中,由余弦定理得 a2
7
9
a2+
4
9
a2-2
7a2
9
4a2
9
cos∠BDF,
∴cos∠BDF=
7
14
,
故選 C.
點評:本題考查求直線方程,求兩直線的焦點坐標(biāo),余弦定理,以及雙曲線的簡單性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(b>a>0)且a∈[1,2],它的左、右焦點為F1,F(xiàn)2,左右頂點分別為A、B.過F2作圓x2+y2=a2的切線,切點為T,交雙曲線與P、Q兩點.
(Ⅰ)求證直線PQ與雙曲線的一條漸近線垂直.
(Ⅱ)若M為PF2的中點,O為坐標(biāo)原點,|OM|-|MT|=1,|PQ|=λ|AB|,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷解析版) 題型:填空題

如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1﹣C2型點“

(1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;

(3)求證:圓x2+y2=內(nèi)的點都不是“C1﹣C2型點”

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:解答題

如圖,已知雙曲線x2-y2=1的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點分別為P1(x1,y1),P2(x2,y2)。
(1)求k的取值范圍,并求x2-x1的最小值;
(2)記直線P1A1的斜率為k1,直線P2A2的斜率為k2,那么,k1·k2是定值嗎?證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊答案