已知f(x)=2sin2ωx+2
3
sinωxsin(
π
2
-ωx)(ω>0)最小正周期為π
(1)求函數(shù)f(x)的單調遞增區(qū)間及對稱中心坐標;
(2)求函數(shù)f(x)在區(qū)間[0,
3
]上的取值范圍.
(1)f(x)=2sin2ωx+2
3
sinωxsin(
π
2
-ωx)=1-cos2ωx+
3
sin2ωx=2sin(2ωx-
π
6
)+1,
∵T=
ω
=π,∴ω=1,∴f(x)=2sin(2x-
π
6
)+1.
令  2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,可得 kπ-
π
6
≤x≤kπ+
π
3
,k∈z,故函數(shù)的增區(qū)間為[kπ-
π
6
,kπ+
π
3
],k∈z.
令2x-
π
6
=kπ,k∈z,解得 x=
 kπ
2
+
π
12
,k∈z,故函數(shù)的對稱中心為 (
 kπ
2
+
π
12
,0),k∈z.
(2)∵0≤x≤
3
,∴-
π
6
≤2x-
π
6
6
,∴-
1
2
≤sin(2x-
π
6
)≤1,∴0≤f(x)≤3,
故函數(shù)f(x)在區(qū)間[0,
3
]上的取值范圍是[0,3].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sin2ωx+2
3
sinωxsin(
π
2
-ωx)(ω>0)最小正周期為π
(1)求函數(shù)f(x)的單調遞增區(qū)間及對稱中心坐標;
(2)求函數(shù)f(x)在區(qū)間[0,
3
]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=2sin2ωx+2數(shù)學公式sinωxsin(數(shù)學公式-ωx)(ω>0)最小正周期為π
(1)求函數(shù)f(x)的單調遞增區(qū)間及對稱中心坐標;
(2)求函數(shù)f(x)在區(qū)間[0,數(shù)學公式]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省五校協(xié)作體高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知f(x)=2sin2ωx+2sinωxsin(-ωx)(ω>0)最小正周期為π
(1)求函數(shù)f(x)的單調遞增區(qū)間及對稱中心坐標;
(2)求函數(shù)f(x)在區(qū)間[0,]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省五校協(xié)作體高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知f(x)=2sin2ωx+2sinωxsin(-ωx)(ω>0)最小正周期為π
(1)求函數(shù)f(x)的單調遞增區(qū)間及對稱中心坐標;
(2)求函數(shù)f(x)在區(qū)間[0,]上的取值范圍.

查看答案和解析>>

同步練習冊答案