經(jīng)過(guò)點(diǎn)D(0,2),且斜率為2的直線方程是( 。
分析:由直線的點(diǎn)斜式方程,列式并進(jìn)行化簡(jiǎn),即可得到本題答案.
解答:解:∵直線經(jīng)過(guò)點(diǎn)D(0,2),且斜率為2
∴直線的點(diǎn)斜率式方程為y-2=2(x-0)
化簡(jiǎn)得y=2x+2,
故選:D
點(diǎn)評(píng):本題求經(jīng)過(guò)點(diǎn)(0,2)且斜率等于2的直線方程,著重考查了直線的點(diǎn)斜式方程的公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上一定點(diǎn)C(4,0)和一定直線l:x=1,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)問(wèn):點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)設(shè)直線l:y=kx+1與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面上一定點(diǎn)C(4,0)和一定直線l:x=1,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且數(shù)學(xué)公式
(1)問(wèn):點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)設(shè)直線l:y=kx+1與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

經(jīng)過(guò)點(diǎn)D(0,2),且斜率為2的直線方程是(  )
A.y=2x-2B.y=2x-4C.y=-2x-2D.y=2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省益陽(yáng)市沅江市高三質(zhì)量檢測(cè)數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

已知平面上一定點(diǎn)C(4,0)和一定直線l:x=1,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且
(1)問(wèn):點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)設(shè)直線l:y=kx+1與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案