如圖,正三角形ABC的邊長(zhǎng)為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點(diǎn),,.

(1)當(dāng)時(shí),求的大。

(2)求的面積S的最小值及使得S取最小值時(shí)的值.

 

 

(1)θ=60?;(2)當(dāng)θ=45?時(shí),S取最小值.

【解析】

試題分析:本題主要考查正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),在中,,①,而在中,利用正弦定理,用表示DE,在中,利用正弦定理,用表示DF,代入到①式中,再利用兩角和的正弦公式展開(kāi),解出,利用特殊角的三角函數(shù)值求角;第二問(wèn),將第一問(wèn)得到的DF和DE代入到三角形面積公式中,利用兩角和的正弦公式和倍角公式化簡(jiǎn)表達(dá)式,利用正弦函數(shù)的有界性確定S的最小值.

在△BDE中,由正弦定理得

在△ADF中,由正弦定理得. 4分

由tan∠DEF=,得,整理得,

所以θ=60?. 6分

(2)S=DE·DF=

. 10分

當(dāng)θ=45?時(shí),S取最小值. 12分

考點(diǎn):正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省石家莊市畢業(yè)班第一次模擬考試數(shù)學(xué)理文數(shù)學(xué)試卷(解析版) 題型:填空題

在三棱錐P-ABC中側(cè)棱PA,PB,PC兩兩垂直,PA=1,PB=2,PC=3,則三棱錐的外接球的表面積

為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省唐山市高三年級(jí)第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,E是圓O內(nèi)兩弦AB和CD的交點(diǎn),過(guò)AD延長(zhǎng)線上一點(diǎn)F作圓O的切線FG,G為切點(diǎn),已知EF=FG.

求證:(1);(2)EF//CB.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省唐山市高三年級(jí)第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知,則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省唐山市高三年級(jí)第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形ABCD內(nèi)接于圓,BD是圓的直徑,于點(diǎn)E,DA平分.

(1)證明:AE是圓的切線;

(2)如果,,求CD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省唐山市高三年級(jí)第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)數(shù)列滿足,,,則數(shù)列的前n項(xiàng)和可以表示為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省唐山市高三年級(jí)第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的一段大致圖象是( )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省唐山市高三年級(jí)第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的最大值為( )

A. B.2 C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省高三下學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

的圖像與直線相切,并且切點(diǎn)橫坐標(biāo)依次成公差為的等差數(shù)列.

(1)求的值;

(2)ABC中a、b、c分別是∠A、∠B、∠C的對(duì)邊.若是函數(shù) 圖象的一個(gè)對(duì)稱(chēng)中心,且a=4,求ABC面積的最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案