分析 (1)代入求值即可;
(2)用定義法,先看定義域是否關于原點對稱,再研究f(-x)與f(x)的關系.若相等,則為偶函數;若相反,則為奇函數.
解答 解:(1)∵f(2)=$\frac{2×2}{{2}^{2}-1}$=$\frac{4}{3}$,
∴f[f(2)]=$\frac{2×\frac{4}{3}}{(\frac{4}{3})^{2}-1}$=$\frac{24}{7}$;
(2)f(x)是奇函數.理由如下:
∵f(x)=$\frac{2x}{{x}^{2}-1}$的定義域是x≠±1.
又f(-x)=$\frac{-2x}{(-x)^{2}-1}$=-$\frac{2x}{{x}^{2}-1}$,即f(-x)=-f(x),
∴f(x)是奇函數.
點評 本題主要考查函數奇偶性的判斷,函數的值.證明函數的寄偶性時,一般用定義.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | $\frac{1}{9}$ | C. | $-\frac{7}{9}$ | D. | $-\frac{1}{9}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com