已知a=(
2
3
 -
3
5
,b=(
3
2
 
2
3
,則實數(shù)a,b的大小順序(從小到大)是
 
考點:冪函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:把各式都化成以2為底的,再根據(jù)指數(shù)函數(shù)的單調(diào)性比較大。
解答: 解:∵a=(
2
3
 -
3
5
=(
3
2
)
3
5

3
2
>1
,
y=(
3
2
)x
為增函數(shù),
3
5
2
3

(
3
2
)
3
5
(
3
2
)
2
3

∴a<b.
故答案為:a<b
點評:本題主要考查了利用指數(shù)函數(shù)單調(diào)性比較指數(shù)式的大小,通常是先把所要比較的式子化簡,化成同底的,再比較大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線x+y+c=0的傾斜角為α,則sinα+cosα=( 。
A、
2
B、-1
C、0
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,
π
2
)
,且tan(α+
π
4
)=3
,則log5(sinα+2cosα)+log5(3sinα+cosα)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
5
1+2i
(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“?x0∈R,x02+2x0+2≤0”,則命題p的否定?p是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了加強(qiáng)居民的節(jié)水意識,某市制訂了以下生活用水收費標(biāo)準(zhǔn):每戶每月用水未超過7m3時,每立方米收費1.0元,并加收0.2元的城市污水處理費;超過7m3的部分,每立方米收費1.5元,并加收0.4元的城市污水處理費,請你寫出某戶居民每月應(yīng)交納的水費y(元)與用水量x(m3)之間的函數(shù)關(guān)系,然后設(shè)計一個求該函數(shù)值的程序框圖,并寫出程序語言.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)約束條件
y≥0
y≤x
y≤2-x
t≤x≤t+1(0<t<1)
所確定的平面區(qū)域為D.
(1)記平面區(qū)域D的面積為S=f(t),試求f(t)的表達(dá)式.
(2)設(shè)向量
a
=(1,-1),
b
=(2,-1),Q(x,y)在平面區(qū)域D(含邊界)上,
OQ
=m
a
+n
b
,(m,n∈R),當(dāng)面積S取到最大值時,用x,y表示m+3n,并求m+3n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|+
m
x
-1(x≠0)
(1)若對任意x∈R,不等式f(2x)>0恒成立,求m的取值范圍;
(2)討論函數(shù)m2=3零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,an=an+1+
3
2
anan+1(n∈N*).
(1)求證:數(shù)列{
1
an
}為等差數(shù)列;
(2)若
1
bn
1
an
和1的等差中項,求通項bn
(3)在(2)的條件下,設(shè)數(shù)列{bnbn+1}的前n項和為Tn,求證:Tn
16
9

查看答案和解析>>

同步練習(xí)冊答案