在平面直角坐標(biāo)系中,點(diǎn)集A={(x,y)|x2+y2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},則點(diǎn)集Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為   
【答案】分析:,x=x1+x2,y=y1+y2,得,又-1≤x2≤1,-1≤y2≤1,所以點(diǎn)(x,y)表示以集合B表示的正方形內(nèi)的點(diǎn)為圓心,半徑為1的圓面,由此能求出所求區(qū)域的面積.
解答:解:由,x=x1+x2,y=y1+y2,
,
又-1≤x2≤1,-1≤y2≤1,
所以點(diǎn)(x,y)表示以集合B表示的正方形內(nèi)的點(diǎn)為圓心,半徑為1的圓面.如圖所示,點(diǎn)集Q是由四段圓弧以及連接它們的四條切線段圍成的區(qū)域,
其面積為12+π.
故答案為:12+π.
點(diǎn)評(píng):本題考查二元二次不等式組與平面區(qū)域的關(guān)系問題,考查轉(zhuǎn)化數(shù)學(xué)思想,作圖能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案