11.函數(shù)f(x)=ax-1+4的圖象恒過定點P,則P點坐標(biāo)是(1,5).

分析 根據(jù)指數(shù)函數(shù)y=ax的圖象恒過定點(0,1),即可求出P點的坐標(biāo).

解答 解:函數(shù)f(x)=ax-1+4,
令x-1=0,解得x=1;
當(dāng)x=1時,f(1)=a0+4=5;
所以函數(shù)f(x)的圖象恒過定點P(1,5).
即P點坐標(biāo)是(1,5).
故答案為:(1,5).

點評 本題考查了指數(shù)函數(shù)y=ax的圖象恒過定點(0,1)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若0$<α<\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($α+\frac{π}{4}$)=$\frac{1}{3}$,sin($\frac{β}{2}$+$\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,則cos(2α+β)=$\frac{23}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)=log2${\;}^{{x}^{2}+mx+3}$的定義域為R,求m的取值范圍
(3)若f(x)=log2${\;}^{{x}^{2}+mx+3}$的值域為R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)A={4,5,6,7},B={x∈N|3≤x<6},則A∩B=( 。
A.{4,5,6}B.{4,5}C.{3,4,5}D.{5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)$f(x)=\frac{2}{{{2^x}+1}}+m,x∈R,m$為常數(shù).
(1)若f(x)為奇函數(shù),求實數(shù)m的值;
(2)判斷f(x)在R上的單調(diào)性,并用單調(diào)性的定義予以證明;
(3)求f(x)在(-∞,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對任意的x∈[1,2],都有f(x)≤0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=2|x|+ax為偶函數(shù),則實數(shù)a的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=x2-2x+2在(-∞,1)上的反函數(shù)f-1(x)=1-$\sqrt{x-1}$.x>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在極坐標(biāo)系中,射線l:θ=$\frac{π}{6}$與圓C:ρ=2交于點A,橢圓Γ的方程為ρ2=$\frac{3}{1+2si{n}^{2}θ}$,以極點為原點,極軸為x軸正半軸建立平面直角坐標(biāo)系xOy
(Ⅰ)求點A的直角坐標(biāo)和橢圓Γ的參數(shù)方程;
(Ⅱ)若E為橢圓Γ的下頂點,F(xiàn)為橢圓Γ上任意一點,求$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案