已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(I)求a的值;
(Ⅱ)試判斷方程f(x)=2g(x)+m(m>-1)在(0,+∞)上解的個(gè)數(shù),并說(shuō)明理由.
【答案】分析:(I)由題意知,f'(x)≤0在x∈(0,1)上恒成立以及g'(x)≥0在x∈(1,2)上恒成立,進(jìn)而求出a的值;
(Ⅱ)令,得到函數(shù)h(x)的最小值,再對(duì)m分類(lèi)討論,即可得到方程f(x)=2g(x)+m(m>-1)在(0,+∞)上解的個(gè)數(shù).
解答:解:(I)∵函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),
依題意f'(x)≤0在x∈(0,1)上恒成立,
得2x≤a在x∈(0,1)上恒成立,
∴a≥2…(2分)
又∵,依題意g'(x)≥0在x∈(1,2)上恒成立,
得2x2≥a在x∈(1,2)上恒成立,有a≤2,
∴a=2…(6分)
(Ⅱ)

當(dāng)x∈(0,1)時(shí),h'(x)<0,h(x)在(0,1)上為減函數(shù);
當(dāng)x∈(1,+∞)時(shí),h'(x)>0,h(x)在(1,+∞)上為增函數(shù).
∴hmin(x)=h(1)=m
∴h(x)≥h(1)=m,即2g(x)+m-f(x)≥m…(8分)
①當(dāng)m>0時(shí),

②當(dāng)m=0時(shí),2g(x)≥f(x),當(dāng)且僅當(dāng)x=1時(shí),2g(x)=f(x),
∴f(x)=2g(x)+m在(0,+∞)上僅有一個(gè)解x=1;…(11分)
③當(dāng)-1<m<0時(shí),

∴h(x)在和(1,e)內(nèi)各有一個(gè)零點(diǎn),即f(x)=2g(x)+m在(0,+∞)上有二個(gè)解.…(14分)
點(diǎn)評(píng):此題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,第一問(wèn)比較簡(jiǎn)單,第二問(wèn)就了思路簡(jiǎn)單,但是討論情況多比較復(fù)雜,是一道中檔題;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案