將直線l1:x+y-1=0、l2:nx+y-n=0、l3:x+ny-n=0(n∈N*,n≥2)圍成的三角形面積記為Sn,則
limn→∞
Sn
=
 

精英家教網(wǎng)
分析:由題設(shè)條件解相應(yīng)的方程組可以得到B(
n
n+1
n
n+1
)
,由BO⊥AC結(jié)合題設(shè)條件能夠推導(dǎo)出Sn=
n-1
2(n+1)
,由此能夠求出
lim
n→∞
Sn
的值.
解答:解:B(
n
n+1
,
n
n+1
)
,所以BO⊥AC,
Sn=
1
2
×
2
×(
n
n+1
2
-
2
2
)=
n-1
2(n+1)

所以
lim
n→∞
Sn
=
1
2
,
故答案為
1
2
點(diǎn)評(píng):本題考查極限問(wèn)題的綜合運(yùn)用,解題時(shí)要仔細(xì)審題,認(rèn)真解答,以免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將直線l1:nx+y-n=0和直線l2:x+ny-n=0(n∈N*,n≥2)x軸、y軸圍成的封閉圖形的面積記為Sn,則
limn→∞
Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省襄陽(yáng)市棗陽(yáng)一中高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

將直線l1:x+y-1=0、l2:nx+y-n=0、l3:x+ny-n=0(n∈N*,n≥2)圍成的三角形面積記為Sn,則=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市秋季高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

將直線l1:x+y-1=0、l2:nx+y-n=0、l3:x+ny-n=0(n∈N*,n≥2)圍成的三角形面積記為Sn,則=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海高考真題 題型:填空題

將直線l1:x+y-1=0、l2:nx+y-n=0、l3:x+ny-n=0(n∈N*,n≥2)圍成的三角形面積記為Sn,則=(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案