如圖所示,在直角坐標(biāo)系的第一象限內(nèi),△AOB是邊長為2的等邊三角形,設(shè)直線l:x=t(0≤t≤2)截這個三角形所得位于直線左側(cè)的圖形的面積為f(t),則函數(shù)S=f(t)的圖象只可能是

[  ]

A.

B.

C.

D.

答案:C
解析:

易知表示圖形面積的曲線關(guān)于點(1 對稱,故可排除AB;又陰影部分面積在[0,1]上的增加速度先慢后快,故曲線應(yīng)先緩后陡;同理在[1,2]上曲線先陡后緩,故選D。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)平面上的矩形OABC中,|OA|=2,| OC |=
3
,點P,Q滿足
OP
=
λOA
,
AQ
=( 1-λ )
AB
  ( λ∈R )
,點D是C關(guān)于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F(xiàn)兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),反比例函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省高考適應(yīng)性測試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面上的矩形OABC中,|OA|=2,,點P,Q滿足,點D是C關(guān)于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F(xiàn)兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面上的矩形OABC中,|OA|=2,,點P,Q滿足,,點D是C關(guān)于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F(xiàn)兩點,求△AEF的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省連云港市東海高級中學(xué)高考數(shù)學(xué)考前猜題試卷(1)(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面上的矩形OABC中,|OA|=2,,點P,Q滿足,點D是C關(guān)于原點的對稱點,直線DP與CQ相交于點M.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)若過點(1,0)的直線與點M的軌跡相交于E,F(xiàn)兩點,求△AEF的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案