【題目】某研究機(jī)構(gòu)對(duì)某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

參考公式:

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

【答案】(1)見(jiàn)解析(2)=0.7x-2.3.

【解析】

根據(jù)表中數(shù)據(jù),描在坐標(biāo)系中即可得到散點(diǎn)圖。

(2)根據(jù)公式,依次算出、,代入公式求得,再代入 即可求得回歸直線方程。

(1)散點(diǎn)圖如圖所示.

(2)=9,=4,

=(-3) ×(-2)+(-1) × (-1)+1×1+3×2=14

=(-3)2+(-1)2+1+32=20,

所以=0.7,

=4-0.7×9=-2.3,

故線性回歸方程為0.7x2.3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動(dòng)點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù) (、為常數(shù)),曲線在點(diǎn)處的切線方程是

(1)、的值

(2)的最大值

(3)設(shè),證明:對(duì)任意都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某校6個(gè)學(xué)生的數(shù)學(xué)和物理成績(jī)?nèi)缦卤恚?/span>

學(xué)生的編號(hào)

1

2

3

4

5

6

數(shù)學(xué)

89

87

79

81

78

90

物理

79

75

77

73

72

74

(1)若在本次考試中,規(guī)定數(shù)學(xué)在80分以上(包括80分)且物理在75分以上(包括75分)的學(xué)生為理科小能手.從這6個(gè)學(xué)生中抽出2個(gè)學(xué)生,設(shè)表示理科小能手的人數(shù),求的分布列和數(shù)學(xué)期望;

(2)通過(guò)大量事實(shí)證明發(fā)現(xiàn),一個(gè)學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)具有很強(qiáng)的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績(jī),用表示物理成績(jī),求的回歸方程.

參考數(shù)據(jù)和公式:,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)從某學(xué)校高一年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,下圖是按上述分組方法得到的頻率分布直方圖.

(1)求這50名男生身高的中位數(shù),并估計(jì)該校高一全體男生的平均身高;

(2)求這50名男生當(dāng)中身高不低于176的人數(shù),并且在這50名身高不低于176的男生中任意抽取2人,求這2人身高都低于180的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)在直線上,且離心率.

(1)求該橢圓的方程;

(2)若是該橢圓上不同的兩點(diǎn),且線段的中點(diǎn)在直線上,試證: 軸上存在定點(diǎn),對(duì)于所有滿足條件的,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若函數(shù)內(nèi)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較甲、乙兩地某月12時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中12時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖.考慮以下結(jié)論:

①甲地的平均氣溫低于乙地的平均氣溫;

②甲地的平均氣溫高于乙地的平均氣溫;

③甲地氣溫的標(biāo)準(zhǔn)差小于乙地氣溫的標(biāo)準(zhǔn)差;

④甲地氣溫的標(biāo)準(zhǔn)差大于乙地氣溫的標(biāo)準(zhǔn)差.

其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

同步練習(xí)冊(cè)答案