設雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設直線l與y軸的交點為P,取,求a的值.

答案:
解析:

  解:(1)將y=-x+1代入雙曲線-y2=1中得(1-a2)x2+2a2x-2a2=0.①

  ∴

  解之,得0<a<且a≠1.

  又雙曲線的離心率e=,

  ∵0<a<,且a≠1,

  ∴e>且e≠

  (2)設A(x1,y1),B(x2,y2),P(0,1),

  ∵

  ∴(x1,y1-1)=(x2,y2-1).

  由此得x1x2

  由于x1、x2是方程①的兩根,且1-a2≠0,

  ∴x2,x22

  消去x2,由a>0得a=

  解析:本題主要考查直線與圓錐曲線的位置關系,聯(lián)立直線與雙曲線方程是必須的,第(1)問利用△>0可得a的范圍,再寫出離心率關于a的表達式,可求出離心率的范圍;第(2)問由韋達定理及向量坐標關系,可得到關于a的方程,解出a即可.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:中學教材標準學案 數(shù)學 高二上冊 題型:044

設雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(Ⅰ)求雙曲線C的離心率e的取值范圍;

(Ⅱ)設直線l與y軸的交點為P,且.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:上海市進才中學2007屆高三文科月考六數(shù)學試題 題型:044

設雙曲線C-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B

(1)求a的取值范圍:

(2)設直線ly軸的交點為P,且.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省、臨川一中高三8月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

設雙曲線C:-y2=1的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q.

(1)若直線m與x軸正半軸的交點為T,且·=1,求點T的坐標;

(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;

(3)過點F(1,0)作直線l與(2)中的軌跡E交于不同的兩點A、B,設=λ·,若λ∈[-2,-1],求||(T為(1)中的點)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省高三2月月考文科數(shù)學試卷 題型:選擇題

設雙曲線C:-y2=1的右焦點為F,直線l過點F且斜率為k,若直線l與雙曲線C的左、右兩支都相交,則直線l的斜率的取值范圍是                      

A、k≤-或k≥    B、k<-或k>   C、-<k<    D、-≤k≤

 

 

查看答案和解析>>

同步練習冊答案