如圖設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A,B兩點,點C在拋物線的準(zhǔn)線上,且BC∥x軸,證明直線AC經(jīng)過原點O.
證明:拋物線方程為y2=2px(p>0),焦點為F(,0)所以過點F的直線AB的方程為x=my+ 代入拋物線方程得:y2-2pmy-p2=0,若記A(x1,y1),B(x2,y2),則y1,y2是該方程的兩個根.所以y1y2=-p2因為BC∥x軸,且點C在準(zhǔn)線x=上,所以點C的坐標(biāo)為(,y2),故直線CO的斜率為k= 即k也是直線OA的斜率,所以直線AC經(jīng)過原點O. 分析思維通常采用分析法多,綜合法少一些,這是因為分析法分析目標(biāo)明確,追求充分條件,再寫出綜合法證明步驟,表述較簡明準(zhǔn)確;但是較復(fù)雜的問題則需兩種思維方式同時運(yùn)用. 分析:本題應(yīng)先畫出圖形,將文字語言轉(zhuǎn)換成符號語言及圖形語言,借助圖形的直觀,幫助分析思路方法,可用綜合法的形式進(jìn)行表述. |
科目:高中數(shù)學(xué) 來源:遼寧省遼南協(xié)作體2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:044
如圖,過拋物線y2=2px(p>0)的頂點作兩條互相垂直的弦OA、OB.
(1)設(shè)OA的斜率為k,試用k表示點A、B的坐標(biāo);
(2)求弦AB中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京市海淀區(qū)2007年高三年級第一學(xué)期期末練習(xí) 數(shù)學(xué)(文科) 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省杭州學(xué)軍中學(xué)2009屆高三第十次月考數(shù)學(xué)(文)試題 題型:044
設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A(x1,y1)、B(x2,y2)(y1>0,y2<0)兩點,M是拋物線的準(zhǔn)線上的一點,O是坐標(biāo)原點,若直線MA、MF、MB的斜率分別記為:kMA=a、kMF=b、kMB=c,(如圖)
(1)若y1y2=-4,求拋物線的方程;
(2)當(dāng)b=2時,求證:a+c為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省日照一中2012屆高三第七次階段復(fù)習(xí)達(dá)標(biāo)檢測數(shù)學(xué)理科試題 題型:044
如圖,橢圓E:(a>b>0)的右焦點F2與拋物線y2=4x的焦點重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點,與拋物線交于C、D兩點,且.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓E相交于兩點A,B,設(shè)P為橢圓E上一點,且滿足+=t(O為坐標(biāo)原點),當(dāng)|-|<時,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,過定點C(p,0)作直線與拋物線y2=2px(p>0)相交于A,B兩點,如圖,設(shè)動點A(x1,y1)、B(x2,y2).
(1)求證:y1y2為定值;
(2)若點D是點C關(guān)于坐標(biāo)原點O的對稱點,求△ADB面積的最小值;
(3)是否存在平行于y軸的定直線l,使得l被以AC為直徑的圓截得的弦長恒為定值?若存在,求出l的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com