2.已知全集U=R,集合A={x|y=lg(x2-4x)},B={x|x<2},則(∁UA)∩B=( 。
A.{x|x≥0}B.{x|0≤x<2}C.{x|2<x≤4}D.{x|0≤x≤4}

分析 求出集合A中不等式的解集確定出A,找出U中不屬于A的部分,確定出A的補集,找出A補集與B的公共部分,即可確定出所求的集合.

解答 解:∁UA={x|x2-4x≤0}={x|0≤x≤4},
所以(∁UA)∩B={x|0≤x<2}.
故選:B.

點評 此題考查了交、并、補集的混合運算,熟練掌握交、并、補集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題中正確的是( 。
A.若命題p:?x∈R,x3-x2+1<0,則命題¬p:?x∈R,x3-x2+1>0
B.“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
C.若x≠0,則$x+\frac{1}{x}≥2$
D.函數(shù)$f(x)=2sin(2x+\frac{π}{6})$圖象的一條對稱軸是x=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)等差數(shù)列{an}的前n項和為Sn,若a3=1,則S5=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-2x}},x≤-1\\ 2x+2,x>-1\end{array}\right.$,則f[f(-2)]=34,不等式f(x)≥16的解集為(-∞,-2]∪[7,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知(x,y)在映射f下的像是(x+y,x-y),則像(1,2)在f下的原像為(  )
A.$(\frac{3}{2},\frac{1}{2})$B.$(-\frac{3}{2},\frac{1}{2})$C.$(-\frac{3}{2},-\frac{1}{2})$D.$(\frac{3}{2},-\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,△ABC為等邊三角形是bcosA=acosB的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y>m2+3m-2恒成立,則實數(shù)m的取值范圍是( 。
A.m<-2或m>5B.-5<m<2C.-2<m<5D.m<-5或m>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列各組中的兩個向量共線的是( 。
A.$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(2,6)B.$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(4,8)C.$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,1)D.$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(6,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是奇函數(shù).
(1)求實數(shù)a和b的值;
(2)證明y=f(x)在區(qū)間(1,+∞)上的單調(diào)遞減;
(3)已知k<0且不等式f(t2-2t+3)+f(k-1)<0對任意的t∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案