已知點P(2,1)是圓O:x2+y2=4外一點.
(1)過點P引圓的切線,求切線方程;
(2)過點P引圓的割線,交圓與A,B兩點,求弦AB中點的軌跡方程.
(1)直線x=2,過點P(2,1)且與圓O相切;
當斜率存在時,設(shè)方程為y-1=k(x-2),即kx-y-2k+1=0
由d=
|-2k+1|
k2+1
=2,可得k=-
3
4
,所以方程為3x+4y-10=0;
(2)設(shè)弦AB中點坐標為(x,y),則
y
x
y-1
x-2
=-1
,即x2+y2-2x-y=0
與圓O方程聯(lián)立,可得y=4-2x,代入圓O方程可得5x2-16x+12=0
∴x=1.2或x=2
∴弦AB中點的軌跡方程為x2+y2-2x-y=0(1.2<x<2).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點P(-2,1),Q(3,2),直線l過點M(0,1)且與線段PQ相交,則直線l的斜率K的取值范圍是
(-∞,0]∪[
1
3
,+∞)
(-∞,0]∪[
1
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,1)是圓O:x2+y2=4外一點.
(1)過點P引圓的切線,求切線方程;
(2)過點P引圓的割線,交圓與A,B兩點,求弦AB中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點P(2,1)是圓O:x2+y2=4外一點.
(1)過點P引圓的切線,求切線方程;
(2)過點P引圓的割線,交圓與A,B兩點,求弦AB中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省湖州二中高二(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知點P(2,1)是圓O:x2+y2=4外一點.
(1)過點P引圓的切線,求切線方程;
(2)過點P引圓的割線,交圓與A,B兩點,求弦AB中點的軌跡方程.

查看答案和解析>>

同步練習冊答案