a=(0,1,-1),b=(1,1,0),且(ab)⊥a,則實數(shù)λ的值是

A.-1                             B.0                              C.1                              D.-2

答案:D

解析:ab=(0,1,-1)+(λ,λ,0)=(λ,1+λ,-1).

由(ab)⊥a,知(aba=0.

所以λ×0+(1+λ)×1-1×(-1)=0,

解得λ=-2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•鹽城二模)設函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
12
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知無窮數(shù)列{an}的前n項和為Sn,且滿足Sn=A
a
2
n
+Ban+C
,其中A、B、C是常數(shù).
(1)若A=0,B=3,C=-2,求數(shù)列{an}的通項公式;
(2)若A=1,B=
1
2
C=
1
16
,且an>0,求數(shù)列{an}的前n項和Sn;
(3)試探究A、B、C滿足什么條件時,數(shù)列{an}是公比不為-1的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A、b是兩條不同直線,α、β是兩個不同的平面,則下列四個命題中正確命題的個數(shù)是(    )

①若A⊥b,A⊥α,bα,則b∥α  ②若A∥α,α⊥β,則A⊥β  ③若A⊥β,α⊥β,則A∥α或Aα  ④若A⊥b,A⊥α,b⊥β,則α⊥β

A.0                     B.1                       C.2                  D.3

查看答案和解析>>

科目:高中數(shù)學 來源:2013年江蘇省鹽城市高考數(shù)學二模試卷(解析版) 題型:解答題

設函數(shù)(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為,求a,b的值.

查看答案和解析>>

同步練習冊答案