當(dāng)且僅當(dāng)m≤r≤n時(shí),兩圓x2+y2=49與x2+y2-6x-8y+25-r2=0(r>0)有公共點(diǎn),則n-m的值為   
【答案】分析:先把圓的方程整理成標(biāo)準(zhǔn)方程,進(jìn)而可知兩個(gè)圓一個(gè)是以(0,0)為圓心2為半徑,另一個(gè)是以(3,-4)為圓心r為半徑的.進(jìn)而可知要使兩圓有公共焦點(diǎn)需3≤r≤7,求得m和n,答案可得.
解答:解:整理x2+y2-6x-8y+25-r2=0得(x-3)2+(y-4)2=r2,
∴題設(shè)中的兩個(gè)圓一個(gè)是以(0,0)為圓心7為半徑,另一個(gè)是以(3,4)為圓心r為半徑.
要使兩圓有公共點(diǎn)需2≤r≤12,進(jìn)而可知m=2,n=12
∴n-m=10
故答案為10
點(diǎn)評(píng):本題主要考查了圓與圓的位置關(guān)系及其判定.此類題宜采用數(shù)形結(jié)合的方法解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、當(dāng)且僅當(dāng)m≤r≤n時(shí),兩圓x2+y2=49與x2+y2-6x-8y+25-r2=0(r>0)有公共點(diǎn),則n-m的值為
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

當(dāng)且僅當(dāng)m≤r≤n時(shí),兩圓x2+y2=49與x2+y2-6x-8y+25-r2=0(r>0)有公共點(diǎn),則n-m的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市張家港外國(guó)語(yǔ)學(xué)校高二(上)周日數(shù)學(xué)試卷2(理科)(解析版) 題型:填空題

當(dāng)且僅當(dāng)m≤r≤n時(shí),兩圓x2+y2=49與x2+y2-6x-8y+25-r2=0(r>0)有公共點(diǎn),則n-m的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南通市啟東中學(xué)高三考前輔導(dǎo)材料之小題強(qiáng)化篇1(解析版) 題型:解答題

當(dāng)且僅當(dāng)m≤r≤n時(shí),兩圓x2+y2=49與x2+y2-6x-8y+25-r2=0(r>0)有公共點(diǎn),則n-m的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案