(1)求F(x)=h(x)-φ(x)的極值;
(2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
解:(1)∵F(x)=h(x)-φ(x)=x2-2elnx(x>0),
∴F′(x)=2x=.
當(dāng)x=e時(shí),F′(x)=0.
∵當(dāng)0<x<時(shí),F′(x)<0,此時(shí)函數(shù)F(x)遞減;
當(dāng)x>時(shí),F′(x)>0,此時(shí)函數(shù)F(x)遞增;
∴當(dāng)x=時(shí),F(x)取極小值,其極小值為0.
(2)由(1)可知函數(shù)h(x)和φ(x)的圖象在x=處有公共點(diǎn),因此若存在h(x)和φ(x)的隔離直線,則該直線過這個(gè)公共點(diǎn).
設(shè)隔離直線的斜率為k,則直線方程為y-e=k(x-),
即y=kx+e-k.
由h(x)≥kx+e-k(x∈R),可得x2-kx-e+k≥0當(dāng)x∈R時(shí)恒成立.
∵Δ=(k-2)2,
∴由Δ≤0,得k=2.
下面證明φ(x)≤2x-e當(dāng)x>0時(shí)恒成立.
令G(x)=φ(x)-2x+e=2elnx-2x+e,則
G′(x)=-2,
當(dāng)x=時(shí),G′(x)=0.
∵當(dāng)0<x<時(shí),G′(x)>0,此時(shí)函數(shù)G(x)遞增;
當(dāng)x>e時(shí),G′(x)<0,此時(shí)函數(shù)G(x)遞減;
∴當(dāng)x=時(shí),G(x)取極大值,其極大值為0.
從而G(x)=2elnx-2x+e≤0,
即φ(x)≤2x-e(x>0)恒成立.
∴函數(shù)h(x)和φ(x)存在唯一的隔離直線y=2x-e.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
e |
e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
e |
1 |
4 |
e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省廣州市執(zhí)信中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三12月練習(xí)數(shù)學(xué)試卷 題型:填空題
若存在實(shí)常數(shù)k和b,使函數(shù)和對其定義域上的任意實(shí)數(shù)x恒有:
和,則稱直線為和 的“隔離直線”。
已知,則可推知的“隔離直線”方程為 ▲
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com