已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的對(duì)稱中心;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.
(1)f(x)=
m
n
=(2cos2x,
3
)•(1,sin2x)=2cos2x+
3
sin2x
,
=cos2x+1+
3
sin2x=2sin(2x+
π
6
)+1
.…(4分)
2x+
π
6
=kπ
得,x=
2
-
π
12
(k∈Z)
,
∴函數(shù)f(x)的對(duì)稱中心為(
2
-
π
12
,1)
.…(6分)
(2)f(C)=2sin(2C+
π
6
)+1=3   ∴sin(2C+
π
6
)=1
,
∵C是三角形內(nèi)角,∴2C+
π
6
=
π
2
即:C=
π
6
…(8分)
cosC=
b2+a2-c2
2ab
=
3
2
即:a2+b2=7.
ab=2
3
代入可得:a2+
12
a2
=7
,解之得:a2=3或4,…(10分)
∵a>b,∴a=2,b=
3
.…(12分)
a=
3
或2,∴b=2或
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),
q
=(1,0),<
n
p
>=
π
2
m
n
=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
(1)若關(guān)于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(2)若向量
p
=(cosA,2cos2
C
2
),試求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),向量
n
與向量
m
的夾角為
4
,且
m
n
=-1
(1)求向量
n
;
(2)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,而向量p=(cosx,2cos2(
π
3
-
x
2
))
,其中0<x<
3
,試求|
n
+
p
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1),向量
n
與向量
m
夾角為
4
,且
m
n
=-1.
(Ⅰ)求向量
n
;
(Ⅱ)設(shè)向量
a
=(1,0)向量
b
=(cosx,2cos2
π
3
-
x
2
)),其中0<x<
3
,若
a
n
,試求|
n
+
b
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cos2(x-
π
6
),sinx),
n
=(1,2sinx)
,函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期;
(2)求當(dāng)x∈[0,
12
]
時(shí)函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
m
=(2cos2(x-
π
6
),sinx),
n
=(1,2sinx)
,函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期;
(2)求當(dāng)x∈[0,
12
]
時(shí)函數(shù)f(x)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案