設(shè)C1是以F為焦點(diǎn)的拋物線y2=2px(p>0),C2是以直線為漸近線,以為一個(gè)焦點(diǎn)的雙曲線.
(1)求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)若C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,求p的取值范圍,并求的最大值;
(3)是否存在正數(shù)p,使得此時(shí)△FAB的重心G恰好在雙曲線C2的漸近線上?如果存在,求出p的值;如果不存在,說明理由.

【答案】分析:(1)設(shè)雙曲線C2的方程,利用C2是以直線為漸近線,焦點(diǎn)是,即可求得雙曲線方程;
(2)拋物線方程與雙曲線方程聯(lián)立,可得一元二次方程,利用C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,可得p的取值范圍;設(shè)A、B的坐標(biāo),用坐標(biāo)表示,利用韋達(dá)定理及配方法,可得的最大值;
(3)由(2)知△FAB的重心G(),即G(,),假設(shè)G恰好在雙曲線C2的漸近線上,利用漸近線方程,即可求得結(jié)論.
解答:解:(1)因?yàn)橐粋(gè)焦點(diǎn)是,故焦點(diǎn)在y軸上,于是可設(shè)雙曲線C2的方程為(a>0,b>0)
∵C2是以直線為漸近線,

∵a2+b2=7
∴a=2,b=
∴雙曲線方程為;
(2)拋物線y2=2px(p>0)的焦點(diǎn)F(,0),與雙曲線方程聯(lián)立消y得:4x2-6px+12=0
∵C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,∴△>0,∴p>
設(shè)A(m,n)、B(e,f),則=(m-,n)•(e-,f)=me-(m+e)×++nf=me-(m+e)×++2p
由方程知me=3,m+e=代入得=-+2p+3=-(p-22+9,函數(shù)的對(duì)稱軸為p=2
∵p>,∴p=2時(shí),的最大值為9;
(3)由(2)知△FAB的重心G(,
∵n+f==
∴G(,
假設(shè)G恰好在雙曲線C2的漸近線上,則,∴
∴p=0或p=
∵p>,∴p=
∴存在正數(shù)p=,使得此時(shí)△FAB的重心G恰好在雙曲線C2的漸近線上.
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查向量知識(shí)的運(yùn)用,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海模擬)設(shè)C1是以F為焦點(diǎn)的拋物線y2=2px(p>0),C2是以直線2x-
3
y=0
2x+
3
y=0
為漸近線,以(0,  
7
)
為一個(gè)焦點(diǎn)的雙曲線.
(1)求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)若C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,求p的取值范圍,并求
FA
FB
的最大值;
(3)是否存在正數(shù)p,使得此時(shí)△FAB的重心G恰好在雙曲線C2的漸近線上?如果存在,求出p的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴陽模擬)設(shè)C1是以F為焦點(diǎn)的拋物線y2=2px(p>0),C2是以直線2x-
3
y=0
2x+
3
y=0
為漸近線,以(0,  
7
)
為一個(gè)焦點(diǎn)的雙曲線.
(1)求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)若C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,求p的取值范圍,并求
FA•
FB
的最大值; 
(3)若△FAB的面積S滿足S=
2
3
FA
FB
,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省高考數(shù)學(xué)預(yù)測(cè)試卷(03)(解析版) 題型:解答題

設(shè)C1是以F為焦點(diǎn)的拋物線y2=2px(p>0),C2是以直線為漸近線,以為一個(gè)焦點(diǎn)的雙曲線.
(1)求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)若C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,求p的取值范圍,并求的最大值; 
(3)若△FAB的面積S滿足,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市七校高三(下)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)C1是以F為焦點(diǎn)的拋物線y2=2px(p>0),C2是以直線為漸近線,以為一個(gè)焦點(diǎn)的雙曲線.
(1)求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)若C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,求p的取值范圍,并求的最大值; 
(3)若△FAB的面積S滿足,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省天水一中、甘谷一中高三(下)第八次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)C1是以F為焦點(diǎn)的拋物線y2=2px(p>0),C2是以直線為漸近線,以為一個(gè)焦點(diǎn)的雙曲線.
(1)求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)若C1與C2在第一象限內(nèi)有兩個(gè)公共點(diǎn)A和B,求p的取值范圍,并求的最大值; 
(3)若△FAB的面積S滿足,求p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案