(本小題共13分)

如圖所示,正方形與矩形所在平面互相垂直,,點E為的中點。

(Ⅰ)求證:     

(Ⅱ) 求證:

(Ⅲ)在線段AB上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由。

 

【答案】

(1)根據(jù)三角形的中位線,那么可以// ,然后結(jié)合線面平行的判定定理可知結(jié)論。

(2)結(jié)合已知中正方形的心智,以及,結(jié)合線面垂直的性質(zhì)定理得到線線垂直。

(3)

【解析】

試題分析:(Ⅰ) , 點E為的中點,連接。

的中位線// ……2分

                            ……4分

(II) 正方形中, 

由已知可得: …….6分

,                        …….7分

                                        …….8分

(Ⅲ)由題意可得:,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,則,

      9分

設(shè)

             10分

設(shè)平面的法向量為

 

           11分

是平面的一個法向量,而平面的一個法向量為               12分

要使二面角的大小為         

   

解得:

=時,二面角的大小為   13分

考點:空間中的線面平行和線線垂直以及二面角的求解

點評:解決平行和垂直的證明,一般要用到判定定理和性質(zhì)定理,然后結(jié)合空間向量法來求解二面角,屬于基礎(chǔ)題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點,求a的值;

   (II)若的圖象在點(1,)處的切線方程為,

(i)求在區(qū)間[-2,4]上的最大值;

(ii)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆北京市豐臺區(qū)高三年級第二學期統(tǒng)一練習理科數(shù)學 題型:解答題


(本小題共13分)
已知函數(shù)
(Ⅰ)若處取得極值,求a的值;
(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年北京市高三壓軸文科數(shù)學試卷(解析版) 題型:解答題

(本小題共13分)

已知向量,設(shè)函數(shù).

(Ⅰ)求函數(shù)上的單調(diào)遞增區(qū)間;

(Ⅱ)在中,,,分別是角,的對邊,為銳角,若,的面積為,求邊的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市豐臺區(qū)高三下學期統(tǒng)一練習數(shù)學理卷 題型:解答題

(本小題共13分)

某商場在店慶日進行抽獎促銷活動,當日在該店消費的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標有“生”“意”“興”“隆”字的球為一等獎;不分順序取到標有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標有“生”“意”“興”三個字的球為三等獎.

(Ⅰ)求分別獲得一、二、三等獎的概率;

(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(文)試題 題型:解答題

(本小題共13分)
已知函數(shù)
(I)當a=1時,求函數(shù)的最小正周期及圖象的對稱軸方程式;
(II)當a=2時,在的條件下,求的值.

查看答案和解析>>

同步練習冊答案