21、如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點(diǎn)M,求證:PC是⊙O的切線.
分析:要證PC是⊙O的切線,只要連接OC,再證∠PCO=90°即可.由△PAO≌△PCO,可證得∠PCO=90°.
解答:證明:連接OC,
∵PA⊥AB,
∴∠PA0=90°.(1分)
∵PO過AC的中點(diǎn)M,OA=OC,
∴PO平分∠AOC.
∴∠AOP=∠COP.(3分)
∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.
∴△PAO≌△PCO.(6分)
∴∠PCO=∠PA0=90°.
即PC是⊙O的切線.(7分)
點(diǎn)評:本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知O、A、B是平面上三點(diǎn),向量
OA
=
a
,
OB
=
b
.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量
OP
=
p
,且|
a
|=3,|
b
|=2,則
p
•(
a
-
b
)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:訓(xùn)練必修四數(shù)學(xué)人教A版 人教A版 題型:044

如圖,已知O是△ABC內(nèi)一點(diǎn),∠AOB=150°,∠BOC=90°.設(shè)a,b,c,且|a|=2,|b|=1,|c|=3,試用ab表示c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,已知O、A、B是平面上三點(diǎn),向量數(shù)學(xué)公式=數(shù)學(xué)公式,數(shù)學(xué)公式=數(shù)學(xué)公式.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量數(shù)學(xué)公式=數(shù)學(xué)公式,且|數(shù)學(xué)公式|=3,|數(shù)學(xué)公式|=2,則數(shù)學(xué)公式•(數(shù)學(xué)公式)的值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷5(文科)(解析版) 題型:選擇題

如圖,已知O、A、B是平面上三點(diǎn),向量=,=.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量=,且||=3,||=2,則•()的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷5(理科)(解析版) 題型:選擇題

如圖,已知O、A、B是平面上三點(diǎn),向量=,=.在平面AOB上,P是線段AB垂直平分線上任意一點(diǎn),向量=,且||=3,||=2,則•()的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案