已知一個全面積為24的正方體,有一個與每條棱都相切的球,此球的體積為          
 
 對于球與正方體的各棱相切,則球的直徑為正方體的面對角線長,即
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

連結球面上兩點的線段稱為球的弦. 半徑為4的球的兩條弦AB、CD的長度分別等于、分別為的中點,每兩條弦的兩端都在球面上運動,有下面四個命題:①弦、可能相交于點②弦可能相交于點的最大值為5 ④的最小值為1其中真命題為
A.①③④          B.①②③      C.①②④        D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在半徑為13的球面上有A , B, C 三點,AB=6,BC=8,CA=10,則
(1)球心到平面ABC的距離為 ____  ;
(2)過A,B兩點的大圓面與平面ABC所成二面角(銳角)的正切值為   __ .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,S-ABC是三條棱兩兩互相垂直的三棱錐,O為底面ABC內一點,若∠OSA=α,∠OSB=β,∠OSC=γ,那么tanαtanβtanγ的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

側棱長為2的正三棱錐(底面為正三角形、頂點在底面上的射影為底面的中心的三棱錐)其底面周長為9,則棱錐的高為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知△ABC三個頂點的坐標分別為A(1,0),B(2,0),C(2,1),記△ABC繞x軸旋轉一周所得幾何體的體積為V1,繞y軸
旋轉一周所得幾何體的體積為V2,則V1與V2的比值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正三角形ABC的中線AF與中位線DE相交于點G,已知△A′ED是△AED繞DE旋轉過程中的一個圖形,現(xiàn)給出下列四個命題:
①動點A′在平面ABC上的射影在線段AF上;
②恒有平面A′GF⊥平面BCED;
③三棱錐A′-FED的體積有最大值;
④直線A′E與BD不可能垂直.
其中正確的命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若地球半徑為R,在東經的經線上有A、B兩點,A在北緯,B在南緯,則它們的球面距離是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于平面和共面的直線、下列命題中真命題是
A.若        B.若
C.若       D.若、所成的角相等,則

查看答案和解析>>

同步練習冊答案