精英家教網 > 高中數學 > 題目詳情
過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有(  )
A.1條B.2條C.3條D.4條
C
設過點(0,1)斜率為k的直線方程為y=kx+1.
得k2x2+(2k-4)x+1=0.(*)
當k=0時,(*)式只有一個根;
當k≠0時,Δ=(2k-4)2-4k2=-16k+16,
由Δ=0,即-16k+16=0得k=1.
所以k=0,或k=1時,直線與拋物線只有一個公共點,
又直線x=0和拋物線只有一個公共點.選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經過的定點坐標;
(2)拋物線的焦點為,若過點的直線與拋物線相交于兩點,若,求直線的斜率;
(3)若過正半軸上點的直線與該拋物線交于兩點,為拋物線上異于的任意一點,記連線的斜率為試求滿足成等差數列的充要條件.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知拋物線方程為,直線的方程為,在拋物線上有一動點P到y(tǒng)軸的距離為,P到直線的距離為,則的最小值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

過拋物線的頂點作射線與拋物線交于,若,求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若動點與定點和直線的距離相等,則動點的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線上到其焦點距離為5的點有(   )
A.0個B.1個 C.4個D.2個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為(  )
【選項】
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的焦點坐標是(     )
A.B.C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線k>0)與拋物線相交于、兩點,的焦點,若,則k的值為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案