【題目】如圖一塊長方形區(qū)域,在邊的中點處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.

(1)當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時,求的最大值;

(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(轉(zhuǎn)到,再回到,稱“一個來回”,忽略處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)邊上有一點,且,求點在“一個來回”中被照到的時間.

【答案】(1)見解析;(2);(3)2分鐘.

【解析】

(1)由題意結(jié)合三角函數(shù)的性質(zhì)可得:當(dāng)時,當(dāng)時,;

2)結(jié)合(1)中函數(shù)的解析式和三角函數(shù)的性質(zhì)可得當(dāng)時,;

3)結(jié)合實際問題和三角函數(shù)的性質(zhì)計算可得點被照到的時間為分鐘.

(1)當(dāng)時,上,,

當(dāng)時,、都在上,;

(2)當(dāng)時,,

由于,所以當(dāng)時,;

(3)在一個來回中,共轉(zhuǎn)動了,

其中點被照到時,共轉(zhuǎn)動了,

被照到的時間為分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線的斜率為2,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.是自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,小凳凳面為圓形,凳腳為三根細(xì)鋼管.考慮到鋼管的受力等因素,設(shè)計的小凳應(yīng)滿足:三根細(xì)鋼管相交處的節(jié)點與凳面圓形的圓心的連線垂直于凳面和地面,且分細(xì)鋼管上下兩段的比值為,三只凳腳與地面所成的角均為.、、是凳面圓周的三等分點,厘米,求凳子的高度及三根細(xì)鋼管的總長度(精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項數(shù)):第一行是以4為首項,4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:;為數(shù)表中第行的第個數(shù).

……

(1)求第2行和第3行的通項公式;

(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達式;

(3)若,試求一個等比數(shù)列,使得,且對于任意的,均存在實數(shù),當(dāng)時,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?

2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1的側(cè)面AA1B1B是菱形,側(cè)面AA1C1C是矩形,平面AA1C1C⊥平面AA1B1B,∠BAA1,AA1=2AC=2OAA1的中點.

1)求證:OCBC1;

2)求點C1到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點都在雙曲線上,直線軸相交于點,設(shè)坐標(biāo)原點為.

1)求雙曲線的方程,并求出點的坐標(biāo)(用表示);

2)設(shè)點關(guān)于軸的對稱點為,直線軸相交于點.問:在軸上是否存在定點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.

3)若過點的直線與雙曲線交于兩點,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點為,短軸的一個端點的距離等于焦距.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是四條直線,所圍成的矩形在第一、第二象限的兩個頂點,是橢圓上任意一點,若,求證:為定值;

3)過點的直線與橢圓交于不同的兩點、,且滿足△與△的面積的比值為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案