已知,若對任意兩個不等的正實數(shù)都有恒成立,

的取值范圍是     

 

【答案】

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x-6)+alnx在x∈(2,+∞)上不具有單調(diào)性.
(I)求實數(shù)a的取值范圍;
(Ⅱ)若f'(x)是f(x)的導函數(shù),設g(x)=f′(x)+6-
2
x2
,試證明:對任意兩個不相等正數(shù)x1、x2,不等式|g(x1)-g(x2)|>
38
27
|x1-x2|
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab
ab
;
(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(結論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ax2-bx(a,b∈R),令h(x)=f(x)+g(x).
(Ⅰ)若1和2是函數(shù)h(x)的兩個極值點,求a,b的值;
(Ⅱ)當a=
12
,b≥2
時,若對任意兩個不相等的實數(shù)x1,x2∈[1,2],都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=ax2-bx(a,b∈R),令h(x)=f(x)+g(x).
(I)若1和2是函數(shù)h(x)的兩個極值點,求a,b的值;
(II)當數(shù)學公式時,若對任意兩個不相等的實數(shù)x1,x2∈[1,2],都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的值.

查看答案和解析>>

同步練習冊答案