7.已知x≥4,函數(shù)y=$\frac{4}{x}$+x的最小值是(  )
A.5B.4C.8D.6

分析 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出.

解答 解:x≥4,函數(shù)f(x)=$\frac{4}{x}$+x,
∴f′(x)=1-$\frac{4}{{x}^{2}}$=$\frac{{x}^{2}-4}{{x}^{2}}$>0,
因此函數(shù)f(x)在[4,+∞)上單調(diào)遞增.
∴x=4時(shí),函數(shù)f(x)取得最小值,f(4)=5.
故選:A.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.對(duì)于任意向量$\overrightarrow{a},\overrightarrow$,下列命題中正確的是( 。
A.若$\overrightarrow{a},\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.等邊三角形ABC的三個(gè)頂點(diǎn)在拋物線y2=4x上,其中點(diǎn)A重合于坐標(biāo)原點(diǎn),求△ABC的邊長(zhǎng)|BC|和它的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列說(shuō)法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要條件
C.“若tanα≠$\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列正確命題有③④.
①“$sinθ=\frac{1}{2}$”是“θ=30°”的充分不必要條件
②如果命題“(p或q)”為假命題,則p,q中至多有一個(gè)為真命題
③設(shè)a>0,b>1,若a+b=2,則$\frac{2}{a}+\frac{1}{b-1}$的最小值為$3+2\sqrt{2}$
④函數(shù)f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,則a的取值范圍a<-1或$a>\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{lnx}{x}-1$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)m>0,若函數(shù)g(x)=2xf(x)-x2+2x+m在$[{\frac{1}{e},e}]$上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列求導(dǎo)運(yùn)算正確的是( 。
A.${({\frac{1}{x}})^′}=\frac{1}{x^2}$B.${({log_2}x)^’}=\frac{1}{xln2}$
C.(3x)′=3xlog3eD.${({\frac{e^x}{x}})^′}=\frac{{x{e^x}+{e^x}}}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(-2,1)B.(1,2)C.[-2,1]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)$\overrightarrow{e_1},\overrightarrow{e_2}$是不共線的向量,$\overrightarrow a=\overrightarrow{e_1}+k\overrightarrow{e_2}$,$\overrightarrow b=k\overrightarrow{e_1}+\overrightarrow{e_2}$,若$\overrightarrow a$與$\overrightarrow b$共線,則實(shí)數(shù)k為( 。
A.0B.-1C.-2D.±1

查看答案和解析>>

同步練習(xí)冊(cè)答案