記等差數(shù)列{an}的前n項(xiàng)和為Sn
(1)求證:數(shù)列{
Sn
n
}是等差數(shù)列;
(2)若a1=1,且對任意正整數(shù)n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=aan(a>0),求證:
b1+b2+…+bn
n
b1+bn
2
設(shè)等差數(shù)列{an}的公差為d,(1)由于Sn=na1+
n(n-1)
2
d
,從而
Sn
n
=a1+
n-1
2
d

所以當(dāng)n≥2時,
Sn
n
-
Sn-1
n-1
=(a1+
n-1
2
d)-(a1+
n-2
2
d)
=
d
2
,
即數(shù)列{
Sn
n
}是等差數(shù)列.
(2)∵對任意正整數(shù)n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,
Sn+1
+
Sn-1
=2
Sn
,即數(shù)列{
Sn
}是等差數(shù)列,設(shè)其公差為t,
Sn
=
S1
+(n-1)t=1+(n-1)t
,所以Sn=[1+(n-1)t]2
所以當(dāng)n≥2時,an=Sn-Sn-1=[1+(n-1)t]2-[1+(n-2)t]2=2t2n-3t2+2t,
又由等差數(shù)列{an}中,a2-a1=a3-a2,即(4t2-3t2+2t)-1=(6t2-3t2+2t)-(4t2-3t2+2t)
所以t=1,即an=2n-1.
(3)由于an=a1+(n-1)d,bn=aan,則
bn+1
bn
=a
an+1-an
=ad
,
即數(shù)列{bn}是公比大于0,首項(xiàng)大于0的等比數(shù)列,記其公比是q(q>0).
以下證明:b1+bn≥bp+bk,其中p,k為正整數(shù),且p+k=1+n.
∵(b1+bn)-(bp+bk)=b1+b1qn-1-b1qp-1-b1qk-1=b1(qp-1-1)(qk-1-1),
當(dāng)q>1時,因?yàn)閥=qx為增函數(shù),p-1≥0,k-1≥0,
∴qp-1-1≥0,qk-1-1≥0,∴b1+bn≥bp+bk;
當(dāng)q=1時,b1+bn=bp+bk;
當(dāng)q=1時,因?yàn)閥=qx為減函數(shù),p-1≥0,k-1≥0,
∴qp-1-1≤0,qk-1-1≤0,∴b1+bn≥bp+bk
綜上:b1+bn≥bp+bk,其中p,k為正整數(shù),且p+k=1+n.
∴n(b1+bn)=(b1+bn)+(b1+bn)+…(b1+bn)≥(b1+bn)+(b2+bn-1)+…(bn+b1
=(b1+b2+…+bn)+(bn+bn-1+…+b1),
b1+b2+…+bn
n
b1+bn
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=
1
2
,S4=20,則S6=( 。
A、16B、24C、36D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,設(shè)S3=12,且2a1,a2,a3+1成等比數(shù)列,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=
12
,S4=20,則S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•廣州一模)記等差數(shù)列{an}的前n項(xiàng)和為Sn,若a9=10,則 S17=
170
170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城三模)記等差數(shù)列{an}的前n項(xiàng)和為Sn
(1)求證:數(shù)列{
Sn
n
}是等差數(shù)列;
(2)若a1=1,且對任意正整數(shù)n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=aan(a>0),求證:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

同步練習(xí)冊答案