已知雙曲線,點、分別為雙曲線的左、右焦點,動點在軸上方.
(1)若點的坐標為是雙曲線的一條漸近線上的點,求以、為焦點且經(jīng)過點的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點,從點向(2)中圓引一條切線,切點為. 問是否存在一個定點,恒有?請說明理由.
(1)(2)(3)存在
【解析】
試題分析:(1)雙曲線的左、右焦點、的坐標分別為和,
∵雙曲線的漸進線方程為:,
∴點的坐標為是漸進線上的點,即點的坐標為。
∵∴橢圓的長軸長
∵半焦距,∴橢圓的方程 ..5分
(2)∵,∴,即
又圓心在線段的垂直平分線上,故可設(shè)圓心
由!唷的外接圓的方程為 ..9分
(3)假設(shè)存在這樣的定點設(shè)點P的坐標為
∵恒有,∴
即對恒成立。
從而,消去,得
∵方程的判別式
∴①當(dāng)時,方程無實數(shù)解,∴不存在這樣的定點;
②當(dāng)時,方程有實數(shù)解,此時,即直線與圓相離或相切,故此時存在這樣的定點; 14分
考點:本題考查了圓錐曲線方程的求法及直線與圓的位置關(guān)系
點評:解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點、定值、存在性等問題,直線與多種曲線的位置關(guān)系的綜合問題將會逐步成為今后命題的熱點,尤其是把直線和圓的位置關(guān)系同本部分知識的結(jié)合,將逐步成為今后命題的一種趨勢
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州市高三第十四次調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知雙曲線的左右焦點分別為,為雙曲線的離心率,P是雙曲線右支上的點,的內(nèi)切圓的圓心為I,過作直線PI的垂線,垂足為B,則OB=
A.a(chǎn) B.b C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(六)理數(shù)學(xué)卷(解析版) 題型:選擇題
已知雙曲線的左右焦點分別為,為雙曲線的離心率,P是雙曲線右支上的點,的內(nèi)切圓的圓心為I,過作直線PI的垂線,垂足為B,則OB=
A.a(chǎn) B.b C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com