(1)在極坐標系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點的極坐標為   
(2)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若==,則
的值為   
【答案】分析:(1)曲線ρ=2sinθ化為直角坐標方程x2+(y-1)2=1,而ρcosθ=-1化為直角坐標方程為x=-1.聯(lián)立方程組求出交點的直角坐標,再化為極坐標.
由割線定理知:PB•PA=PC•PD,再由已知條件可得PB=PD,再由△PBC∽△PDA,可得 =
解答:解:(1)曲線ρ=2sinθ化為直角坐標方程為x2+y2=2y,即x2+(y-1)2=1,
而ρcosθ=-1化為直角坐標方程為x=-1.
直線x=-1與圓x2+(y-1)2=1的交點坐標為(-1,1),化為極坐標為
(2)由割線定理知:PB•PA=PC•PD,
又∵PA=2PB,PD=3PC,∴PB•2PB=PD•PD,∴PB2=PD2,∴PB=PD,
又∵△PBC∽△PDA,∴==
點評:本題主要考查把極坐標方程化為直角坐標方程的方法,與圓有關的比例線段,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(選做題)直角坐標系xOy和極坐標系Ox的原點與極點重合,x軸正半軸與極軸重合,單位長度相同,在直角坐標系下,曲線C的參數(shù)方程為
x=4cosφ
y=2sinφ
,(φ
為參數(shù)).
(1)在極坐標系下,曲線C與射線θ=
π
4
和射線θ=-
π
4
分別交于A,B兩點,求△AOB的面積;
(2)在直角坐標系下,直線l的參數(shù)方程為
x=6
2
-2t
y=t-
2
(t為參數(shù)),求曲線C與直線l的交點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列兩題中任選一題作答,如果多做則按所做的第一題評分)
(1)在極坐標系中,若過點(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點,則|AB|=
2
3
2
3

(2)已知方程|2x-1|-|2x+1|=a+1有實數(shù)解,則a的取值范圍為
[-3,-1)
[-3,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程選做題)
(1)在極坐標系中,設圓ρ=4上的點到直線ρ(cosθ+
3
sinθ)=6
的距離為d,求d的最大值;
(2)θ取一切實數(shù)時,連接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)兩點的線段的中點為M,求點M的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)(1)在極坐標系中,點P的極坐標為(
2
π
4
),點Q是曲線C上的動點,曲線C的極坐標方程為ρ(cosθ-sinθ)+1=0,則P、Q兩點之間的距離的最小值為
2
2
2
2

(2)已知PA是圓O的切線,切點為A,PA=2,AC是圓O的直徑,PC與圓O交于點B,PB=l,則圓D的半徑R=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題(請考生在兩個小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(1)在極坐標系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標方程為
 

(2)若對于任意角θ,都有
cosθ
a
+
sinθ
b
=1
,則下列不等式中恒成立的是
 

A.a(chǎn)2+b2≤1B.a(chǎn)2+b2≥1C.
1
a2
+
1
b2
≤1
D.
1
a2
+
1
b2
≥1

查看答案和解析>>

同步練習冊答案