設(shè)函數(shù)y=f(x)是定義在R+上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
13
)=1,
(1)求f(1)的值. 
(2)如果f(x)+f(2-x)<2,求x的取值范圍.
分析:(1)根據(jù)f(xy)=f(x)+f(y)對于任意的x,y都成立,利用賦值法:令x=y=1即可求解; 
(2)利用賦值法可得f(
1
9
)=2,然后結(jié)合f(xy)=f(x)+f(y),轉(zhuǎn)化已知不等式f(x)+f(2-x)=f[x(2-x)]<2=f(
1
9
),最后根據(jù)單調(diào)性從而求出所求.
解答:解:(1)∵f(xy)=f(x)+f(y)對于任意的x,y都成立,
∴令x=y=1,則f(1)=f(1)+f(1),
∴f(1)=0;
(2)∵f(
1
3
)=1
∴f(
1
9
)=f(
1
3
×
1
3
)=f(
1
3
)+f(
1
3
)=2,
∴f(x)+f(2-x)=f[x(2-x)]<2=f(
1
9
),
∵y=f(x)是定義在R+上的減函數(shù),
x(2-x)>
1
9
x>0
2-x>0
,
解之得:x∈(1-
2
2
3
,1+
2
2
3
),
∴x的取值范圍是(1-
2
2
3
,1+
2
2
3
).
點評:本題主要考查了利用賦值法求解抽象函數(shù)的函數(shù)值,及利用函數(shù)的單調(diào)性求解不等式,屬于函數(shù)知識的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f (x)是定義域為R的奇函數(shù),且滿足f (x-2)=-f (x)對一切x∈R恒成立,當(dāng)-1≤x≤1時,f (x)=x3,則下列四個命題:
①f(x)是以4為周期的周期函數(shù).
②f(x)在[1,3]上的解析式為f (x)=(2-x)3
③f(x)在(
3
2
,f(
3
2
))
處的切線方程為3x+4y-5=0.
④f(x)的圖象的對稱軸中,有x=±1,其中正確的命題是( 。
A、①②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的函數(shù),并且滿足下面三個條件:
①對正數(shù)x、y都有f(xy)=f(x)+f(y);
②當(dāng)x>1時,f(x)<0;
③f(3)=-1
(I)求f(1)和f(
19
)
的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上以1為周期的函數(shù),若g(x)=f(x)-2x在區(qū)間[2,3]上的值域為[-2,6],則函數(shù)g(x)在[-12,12]上的值域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在正實數(shù)上的增函數(shù),且f(xy)=f(x)+f(y),
(1)求證:f(
xy
)=f(x)-f(y);
(2)若f(3)=1,f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(x-2)=-f(x)對一切x∈R都成立,又當(dāng)x∈[-1,1]時,f(x)=x3,則下列五個命題:
①函數(shù)y=f(x)是以4為周期的周期函數(shù);
②當(dāng)x∈[1,3]時,f(x)=( x-2)3;
③直線x=±1是函數(shù)y=f(x)圖象的對稱軸;
④點(2,0)是函數(shù)y=f(x)圖象的對稱中心;
⑤函數(shù)y=f(x)在點(
3
2
,f(
3
2
))處的切線方程為3x-y-5=0.
其中正確的是
①③
①③
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案