設(shè)f(x)=x3--2x+5,
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[-1,2]時(shí),f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.
解析:(1)(x)=3x2-x-2,令(x)=0, 即3x2-x-2=0x=1或x=. ∴當(dāng)x∈(-∞,)時(shí),(x)>0,f(x)為增函數(shù); 當(dāng)x∈(,1)時(shí),(x)<0,f(x)為減函數(shù); 當(dāng)x∈(1,+∞)時(shí),(x)>0,f(x)為增函數(shù). ∴f(x)的遞增區(qū)間為(-∞,)和(1,+∞),f(x)的遞減區(qū)間為(,1). (2)當(dāng)x∈[-1,2]時(shí),f(x)<m恒成立,只需使f(x)在[-1,2]上的最大值小于m即可.由(1)知f(x)極大值=f()=;f(x)極小值=f(1)=.又f(-1)=,f(2)=7,∴f(x)在[-1,2]上的最大值為f(2)=7.∴m>7. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)f(x)=x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2處取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N*),f(x)的單調(diào)遞減區(qū)間的長(zhǎng)度是正整數(shù),試求m和n的值.(注:區(qū)間(a,b)的長(zhǎng)度為b-a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)
設(shè)f(x)=x3,等差數(shù)列{an}中a3=7,,記Sn=,令bn=anSn,數(shù)列的前n項(xiàng)和為Tn.
(1)求{an}的通項(xiàng)公式和Sn;
(2)求證:Tn<;
(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)
設(shè)f(x)=x3,等差數(shù)列{an}中a3=7,,記Sn=,令bn=anSn,數(shù)列的前n項(xiàng)和為Tn.
(1)求{an}的通項(xiàng)公式和Sn;
(2)求證:Tn<;
(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)f(x)=x3,等差數(shù)列{an}中a3=7,,記Sn=,令bn=anSn,數(shù)列的前n項(xiàng)和為Tn.
(1)求{an}的通項(xiàng)公式和Sn;
(2)求證:Tn<;
(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)f(x)=x3,等差數(shù)列{an}中a3=7,,記Sn=,令bn=anSn,數(shù)列的前n項(xiàng)和為Tn.
(1)求{an}的通項(xiàng)公式和Sn;
(2)求證:Tn<;
(3)是否存在正整數(shù)m,n,且1<m<n,使得T1,Tm,Tn成等比數(shù)列?若存在,求出m,n的值,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com